Microsoft Researchは記憶素子としてDNAを使う研究を進めている。DNAで記憶装置を作りここにデータベースやビデオ映像を記録する。DNAを記憶装置に利用する理由はデータを高密度に格納できるため。MicrosoftはDNA記憶装置をデータセンターに設置する計画も明らかにした。

出典: Microsoft |
DNA素子にデータを格納することに成功
Microsoft ResearchはDNAを単位とする記憶素子にデータを格納しそれを読みだすことに成功したと発表した。DNAにビデオ映像などを格納し、それをエラー無く読み出しビデオを再生することができた。データ容量は200MBでビデオ映像の他にデータベースなどが含まれている。この実験は昨年実施されたが、今年に入り研究詳細が論文「Scaling up DNA data storage and random access retrieval」として発表された。
DNAが注目される理由
記憶素子としてDNAが注目されているのはその記憶密度にある。DNAに高密度でデータを格納でき、インターネット上のすべての情報を広辞苑一冊程度の大きさに収納できるとされる。Microsoftは研究成果を元にDNA記憶装置を開発し、数年後にはデータセンターに設置して運用する計画だ。これはプロトタイプとして位置づけられ、Microsoftが自ら次世代ストレージ開発に乗り出すことになる。
現在の記憶媒体が物理限界に近づいている
記憶素子としてDNAが注目されるもう一つの理由は現在の記憶媒体が物理限界に近づいていることがある。長期保存の記憶媒体には光学ディスクやハードディスクなどが使われる。またフラッシュメモリ(SSD)なども使われる。しかし記憶密度は1平方ミリメートルあたり10GB (10^10 B) で物理的な限界に近付きつつある (ハードディスクの場合)。これに対しMicrosoftが開発したDNAは記憶密度が1平方ミリメートルあたり10の18乗バイト (10^18 B) で1億倍高い。記憶密度が格段に高くなり次世代の記憶素子として注目を集めている。
長期の保存が可能になる
また、DNAを記憶素子として使うことで長期の保存が可能になる。DNAはシリコンと異なり柔らかく崩れやすいイメージがあるが、DNAを低温・低湿度で保存すると経年劣化が極めて小さい。事実、マンモスの化石からDNAを取り出し遺伝子配列を読み出すことができるように、数十万年前の情報が正確に保持される。(下の写真、マンモスのDNAからマンモスを再生するプロジェクトが進んでいる。) また、フロッピーディスクやカセットテープは読み出し装置の製造が中止さると使えなくなる。しかし、DNAの読み出し装置 (DNA Sequencer) は人間が存在する限り必要で長期レンジで利用できる。

出典: Wikipedia / Royal BC Museum |
DNAメモリー素子の仕組み
DNAを記憶媒体にするロジックはシンプルである。しかし、それを実際に実行するには高度な技術を必要とする。DNAをメモリーとして使うには情報2ビットをDNAを構成する塩基 (A, G, T, C) にエンコードする:
00 ➡ A
01 ➡ G
10 ➡ T
11 ➡ C
つまりA (adenine) は00を意味し、G (guanine)は01を意味し、AGは0001となる。ビデオ映像などのデータは0と1で構成されるが、これをAとGとTとCの組み合わせに置き換える。現在の記憶装置は2ビットで稼働するがDNA素子は4ビットで構成されるメモリ素子となる。
ランダムアクセス・メモリ
DNA記憶素子は論理的にはランダムアクセス・メモリ (Random Access Memory) として機能する。パソコンで使われるSRAMやDRAMに相当する。記憶する情報の基本単位(レコード)を定義し、ここにIDやアドレスやペイロードを設定する。情報を書き込むときこの構成のDNAを生成する。このプロセスはDNA Synthesisと呼ばれ、DNAの塩基を特定の配列に組み上げる。今では多くのベンチャー企業が登場しDNA Synthesis技術が高度に進化している。
データ読み出し方法
生成されたDNAは容器 (DNA Pool、下の写真) に入れて保存される。DNAを読み出す際にはDNA読み出し装置 ( DNA Sequencer) を使う。遺伝子解析の時と同じ要領で、容器の中のDNA配列を読み出す。これはSRAMに記録されたデータを読み出す方式に似ており、データにランダムにアクセスし、IDやアドレスをキーに論理ファイルを組み上げていく。

出典: Lee Organick et al. |
DNA生成速度とコストが課題
遺伝子解析の進化でDNA読み出し技術は急成長し、Illumina社などから製品が提供されている。かつては人の全遺伝子解析ではコストが27億ドルとされたが、今ではこれが1000ドル程度でできる。一方、課題はDNA生成のプロセスで、如何に高速でDNAを生成できるかがカギになる。DNAという生物体を生成するため時間がかかりコストも大きい。現在、DNA生成速度は毎秒400 バイトで200MB生成するためには80万ドルかかると推定される。商用化にはDNA生成の速度を上げ価格を下げるためのブレークスルーが必要となる。
DNAを編集して記憶素子を生成するだけでなく、編集したDNAを微生物に組み込んで新しいマテリアルを生成する技術が急速に進化している。これはSynthetic Biology (合成生物学) と呼ばれ、新薬の開発や新素材の合成に応用されている。従来のBiologyと最新のITが融合し新しい産業が生まれている。