Apple Face IDの発表で顔認証技術がブレークする兆し、同時にAIを悪用した攻撃への対応が求められる

AppleはiPhone Xで顔認証技術「Face ID」を発表した。カメラに顔を向けるだけで認証でき、安全性と手軽さが評価され顔認証サービスが普及する勢いとなってきた。スマートフォンや金融サービスで顔認証の導入が一気に進む可能性がある。同時に、顔認証技術はAIを悪用した高度な攻撃に対する備えが求められている。

出典: Apple  

顔認証技術は早くから登場していたが

顔認証技術は1960年代に登場した技術であるが、その精度に問題があり特殊な分野に限定して使われ、一般に普及することは無かった。近年では、AIの進化により顔認証技術の精度が向上し、ベンチャー企業が製品化を進めオンラインバンキングなどで試験的な導入が始まった。同時に、スマートフォンでの展開も始まり、SamsungはハイエンドモデルGalaxy Note 8で顔認証技術を導入した。

Samsung Galaxy Note8の顔認証技術

Galaxy Note 8は2017年9月に出荷されたが、発売直後に顔認証機能が破られる事件が発生した。写真をGalaxy Note 8にかざすとロック画面が解除されることが判明した。利用者は別のスマホで自身の顔を撮影し、それをGalaxy Note 8の顔認証画面に向けるとロック画面が解除さる。Samsungは見解を発表していないが、製品説明を読むと「顔認証は指紋認証やPINなどに比べ安全性が低い」と記載されている。Galaxy Note 8の顔認証機能はセキュリティではなく利便性を重視したデザインとなっている。

Apple Face IDのメカニズム

これに対してApple Face IDはセキュリティ機能を格段に強化し安全に使えるデザインとなっている。Face IDは3Dで顔を識別するため写真や動画で認証されることは無い。iPhone Xは「TrueDepth Camera」と呼ばれる特殊なカメラを搭載しセンサーが顔を3Dで認識する。ここに内蔵されているプロジェクター (Dot Projector、下の写真右端のデバイス) から3万個のドットが顔に照射され、これを赤外線カメラ (Infrared Camera、下の写真左端のデバイス) で読み込み顔の3Dマップ (先頭の写真) を作成する。この情報がプロセッサのストレージ (Secure Enclave) に暗号化して格納される。

出典: Apple  

顔認証精度が高い理由

Face IDを使うときは光源 (Flood Illuminator、上の写真左から二番目のデバイス) から赤外線が照射され、反射波を赤外線カメラで読み込み、登録した顔のマップと比較して認証を実行する。光源が赤外線であるため外部の光の条件に関わらず、暗がりの中でも正確に認証できる。また、髪を伸ばしたり眼鏡をかけると登録した顔のイメージと異なり本人確認が難しくなる。このためAppleは機械学習 (Machine Learning) の手法を使ってアルゴリズムを教育し両者を正確に比較判定できる技術を開発した。同時に、顔認証への攻撃では映画で登場するフェイスマスクが使われる。本人の顔を3Dでコピーしこれをフェイスマスクで再構築する。Appleは実際にハリウッドでフェイスマスクを作りFace IDの認証精度をベンチマークしたと述べている。この背後にも機械学習の手法が使われており人間の顔とフェイスマスクを見分けることができる。

顔写真から顔の仮想現実を生成

顔認証に関して気になる研究成果が報告されている。昨年、University of North Carolinaの研究者はFacebookやInstagramに掲載されている写真から顔を3Dで構築する手法を公開した (下の写真)。対象者の顔写真を複数枚集め、これらの写真から顔の構造を3Dで再構築する。3D構造に肌の色や質感を加え、更に、様々な表情を追加しVRとしてディスプレイに表示する。

出典: Yi Xu et al.

生成した顔のVRが顔認証を破る

研究論文は生成した顔のVRを顔認証システムに入力し認証に成功したと報告している。市販されている五つの顔認証アプリで試験が実施された。顔認証アプリ名と認証成功率は次の通り;KeyLemon (85%), Mobius (80%), True Key (70%), BioID (55%), 1U App (0%)。これらの顔認証アプリはスマホのセキュリティで使われており、1U Appを除いて四つのアプリで認証技術が破られた。この論文は顔認証のメカニズムを改善する必要があると訴えている。

顔の3Dイメージを3Dプリンターで生成

顔のVRはFace IDで試験されていないが、TrueDepth Cameraは顔を3Dで検知きるため、iPhone Xに不正にアクセスすることはできないと思われる。一方、顔のVRを3Dプリンターに出力すると状況は変わるかもしれない。顔の3Dイメージを3Dプリンターで生成して顔認証システムを試験する研究が進んでいる。Security Research Labsはドイツ・ベルリンに拠点を置く企業でセキュリティ研究所として位置づけられる。同社は被験者の顔型を取りMicrosoftの顔認証システム「Hello」で認証を受けることに成功した。iPhone Xが発売になるとSecurity Research Labs などがFace IDの安全性を検証する作業を始めることになる。

1枚の写真から顔を3Dで構成

英国の大学University of Nottingham とKingston Universityの研究者は1枚の顔写真からAIを使って顔を3Dで構成する技術を発表した。Computer Visionにとって顔を3Dで把握するのは非常に難しい技術となる。上述の通り、数多くの写真を入力しこれらから3Dイメージを再構築するのが一般的な手法となっている。これに対し、CNN (イメージを判定するネットワーク) を顔写真と本人の3Dイメージで教育することで、アルゴリズムは1枚の顔写真からその3Dイメージを再構築できるようになった。(下の写真、Alan Turingの写真 (左側) を入力するとアルゴリズムは3Dイメージ (右側) を生成する。) 研究成果を使って顔認証システムの試験が実施されたわけではないが、今後はAIを悪用した認証システムへの攻撃が急増することを示している。iPhone Xが発売になるとFace IDのハッキングレースが始まりAppleは様々な挑戦を受けることになる。

出典: Aaron S. Jackson et al.

バイオメトリック認証のトレンド

バイオメトリック認証の中で顔認証が注目されているのは訳がある。声による認証はコールセンターなどで使われているが複製されやすいとして普及は限定的である。一方、Amazon Echoなどは認証ではなく利用者を特定するために声を使っている。バイオメトリック認証の中で指紋認証が一番幅広く利用されているが小さなセンサーで指紋を正確に読む技術が難しい。更に、指紋は複製しやすく安全性に関する懸念もある。

Appleは虹彩認証に進むのか

虹彩認識 (Iris Recognition) は精度が高く注目されている方式であるがが赤外線センサーなど専用機器が必要となるため普及が進んでいない。但し、Samsung Galaxy Note 7やNote 8はこの機能を既に搭載しているが認証精度や安全性についてはまだ評価結果が固まっていない。一方、iPhone Xは既に赤外線センサーを搭載しており虹彩認証に進むのではと噂されている。

顔認証がバイオメトリック認証の中心となる

色々なバイオメトリック認証方式がある中、顔認証方式は精度が高く使い勝手がいいことから、今後はこの方式が大きく広がると見られている。3年から5年後には認証技術の半分以上が顔認証になるとの予測もある。Apple iPhone Xの出荷はまだ始まっていないが、Face IDが市場に与えた影響は大きく顔認証方式の動向に注視していく必要がある。