Uber自動運転車が道路を歩いていた女性をはね死亡さる事故を起こした。事故原因については調査中であるが、Uberのシステムに重大な問題があるとの見方が出ている。この事故を受け、アリゾナ州は無期限でUberの走行試験を認めないことを発表。重大事故でUberへの信頼が大きく低下している。

出典: Uber |
事故現場
事故は2018年3月18日、Tempe (アリゾナ州フェニックス郊外) で起こった。自動運転車Volvo XC90 SUVが、時速40マイルで走行中、女性をはねた。女性は自転車を押しながら、道路を左から右に横切っていた。クルマは減速することなく直進し、女性をはねて死亡させた。クルマにはセーフティドライバーが搭乗していたが、危険回避措置を取ることはなかった。(下の写真が事故現場で、女性は左側の中央分離帯の辺りから、右方向に歩いていた。Uberは一番右の車線を走っていた。)

出典: Google Street View |
自動運転車のセンサー
Uber自動運転車は複数のセンサーを搭載し、クルマ周囲のオブジェクトを認識する (下の写真)。屋根の上に1台のLidar (レーザーセンサー) と7台のカメラを搭載している。また、レーダーを設置しており、周囲360度をモニターする。

出典: Uber |
Lidarは歩行者を認識する
事故が起こったのは午後10時ころで、夜間走行中の出来事であった。周囲が暗くてもLidarはオブジェクトを認識し、歩行者ほどの大きさであれば確実に検知できる。UberはVelodyne社製のLidar (HDL-64E)を搭載しており人物を把握する (下の写真、Lidarが捉えたポイントクラウド)。Velodyneはコメントを発表し、このケースではLidarは女性と自転車を確実に認識できるとしている。また、回避措置を取る判断はLidarではなくシステムがするとも付け加え、Uber自動運転ソフトウェアに問題があるとの見解を示している。

出典: Velodyne |
カメラもイメージを捉えている
Uberは屋根の上にカメラを7台搭載しており、前方のカメラは近距離と遠距離をカバーする。カメラは前のクルマが減速するのを把握し、また、歩行者を認識する。更に、信号機や道路標識を読み取るために使われる。事故直後のニュース報道を見ると、夜間であるが道路照明灯が設置されており、一定の明るさであることが分かる。カメラの性能は公表されていないが、ダイナミックレンジが広く、女性を捉えている可能性が高い。
ダッシュボードカメラ
自動運転を制御するカメラとは別に、ダッシュボードにモニター用のカメラが備え付けられ、前方と車内を撮影していた。事故捜査に当たっている警察 (Tempe Police Department) は、ダッシュボードカメラの映像を公開した。これを見ると歩行者は左から右に道路を横断していることが確認できる (下の写真)。また、クルマは減速しないでそのまま直進したことも分かる。

出典: Tempe Police Department |
セーフティドライバー
車内を撮影したビデオを見ると、セーフティドライバーは前方を見ておらず、視線を下に落としていたことも判明した。前を注視し問題が発生するとそれを回避するのがセーフティドライバーの任務であるが、この事故ではこの措置が取られなかった。
レーダーは補助的な役割
Uberはクルマ周囲360度を見渡せるレーダーを搭載している。レーダーは走行中のクルマや停車しているクルマなどを把握する。レーダーはドップラー効果を利用して、オブジェクトの移動速度を把握する。しかし、レーダーの解像度は低く、オブジェクトの位置をピンポイントで特定することはきない。このため、一般にレーダーは単独で使われることはなく、レーダーが歩行者を捉えても、アルゴリズムはこの情報だけでブレーキをかけるようにはプログラムされていない。
事故調査が始まる
UberのLidarは確実に歩行者を認識しており、カメラもその画像を捉えている可能性が高い。それにもかかわらず、クルマはなぜ回避措置を取らなかったのか、議論を呼んでいる。ここが事故原因を解明するポイントとなる。現在、国家運輸安全委員会 (National Transportation Safety Board、NTSB) が事故調査を進めている (下の写真)。NTSBは航空機事故だけでなく、交通事故でも重要な案件を担当する。自動運転車事故のように、クルマのソフトウェア解析が求められる高度な案件は、NTSBが原因を究明する。

出典: National Transportation Safety Board |
システムに問題か
NTSBによる調査結論は出ていないが、Uberの自動運転システムに重大な問題があるとみられている。New York TimesはUberのDisengagement (自動運転機能解除措置) の頻度は13マイルと報道している。Disengagementとは、自動運転車が問題に遭遇し、セーフティドライバーが自動運転モードをを解除する措置を示す。つまり、Disengagementを実行することは、自動運転車が危険な状態にあることを意味し、不具合の件数とも解釈できる。Uberではこれが13マイル毎に発生し、システムはまだまだ未熟な状態にあることが分かる。一方、WaymoのDisengagementの頻度は5,600マイルで、両者の製品完成度には大きな開きがある。
アリゾナ州知事による試験運行停止命令
アリゾナ州知事 (Doug Ducey) は、自動運転車の市街地走行試験に寛大であるが、今回の事故を受けて、Uberに試験走行を停止する命令を下した。更に、事故の原因は間違いなくUberにあるとも述べ、厳しい姿勢で対応していくことを明らかにした。これ以上のコメントはないが、Uberはアリゾナ州で自動運転車走行試験を再開できないとのうわさも広がっている。州知事は、事故の少し前に、Waymo無人タクシーの運行を認めたばかりである。この事故により、アリゾナ州だけでなく他の州でも、自動運転に対する規制が厳しくなると見られている。
自動運転車の開発方針
Uber自動運転車事故は、システムが不安定であるにもかかわらず、セーフティドライバーが注意を怠り、回避措置をとらなかったことに原因がある。ネット上には、Uber自動運転車が市街地を軽快に走行しているビデオがたくさんあり、技術が完成したようにも思える。しかし、実際にはシステムは未完成で、市街地を走るにはリスクが高いことを認識させられた。Uberはこれから自動運転車開発をどう続けていくのか、大きな判断を迫られる。