GANは極めて精巧なフェイクイメージを生成、作画メカニズムが分かりExplainable AIの研究が進展

AIは社会生活に多大な恩恵をもたらすが、その中身はブラックボックスで処理のプロセスが見えない。このためAIを安心して利用することができず、普及の足かせになっている。今年は説明責任を果たせるAIの研究が進む年となる。MITの研究チームはGenerative Adversarial Network (GAN)のアルゴリズムを解明し、AIの思考プロセスを明らかにした。

出典: Karras et al. (2017)

フェイクのセレブ

GANは写真撮影したように架空のオブジェクトをリアルに描き出すことで注目を受けている。例えば、セレブの写真をGANに入力しネットワークを教育すると、アルゴリズムは仮想のセレブを描き出す(上の写真)。どこかで見かけた顔のように思えるがこれらは実在の人物ではない。GANがセレブというコンセプトを学び想像で描いたもので、これらのイメージを検索しても該当する人物はでてこない。リアルとフェイクを見分けることができずGANに対して気味悪さを感じるが、AI研究の主要テーマとなっている。

AIアートが高値で売れる

GANが芸術作品を生み出し、それが高値で落札されたことで、一躍その手法に関心が集まった。フランスのAI芸術家集団「Obvious」はGANで絵画を生成する手法で芸術の普及に貢献している。その代表作「Edmond De Belamy」がChristie’sのオークションで$435,000で落札された(下の写真)。AIが生成した絵画に高値が付き市場を驚かせた。作品はある家族(Belamy Family)を描いたもので11点が制作され、その一点がこのEdmond De Belamy である。

出典: Christie’s

AIアートの著作権

AIが描いた絵画にどれだけの芸術的価値があるかが議論になっているが、同時に、AIが制作した作品の著作権は誰に帰属するかも問題となっている。このAIアートを制作したのはObvious社で、GANに古典的な肖像画15,000点を読み込ませアルゴリズムを教育した。GANは肖像画というコンセプトを学びアルゴリズムは新しい作品を創作した。

アルゴリズム開発者か利用者か

Obvious社が使用したGANはRobbie Barratという人物が開発し、オープンソースとしてGitHubに登録されている。誰でも自由にこのGANを使うことができるが、Obvious社はGAN開発者には触れず、ルール違反が指摘されている。そもそも、生成された絵画の著作権はアルゴリズム開発者にあるのか、それともアルゴリズム利用者にあるのか、議論となっている。

MIT-IBM Watson AI Lab

GANに関する多くの問題が未解決であるが、時代を変える技術として注目されている。また、GANのアルゴリズムはブラックボックスで、作画の仕組みを解明する動きが広がっている。MITの研究グループ「MIT-IBM Watson AI Lab」はGANのアルゴリズムの解明を進め、GANの思考メカニズムを明らかにした。GANはどのように学習し、どのように判断するかが特定でき、この研究がAIのブラックボックスを解明する大きな第一歩となった。

研究成果

研究成果は「GAN Dissection: Visualizing and Understanding Generative Adversarial Networks」として発表された。この研究でGANがオブジェクトを把握するメカニズムを解析し、それを可視化して示した。具体的には、ニューラルネットワークの中で、どのレイヤーのどのニューロン(ユニットと呼ぶ)が特定のオブジェクト(木や雲など)の生成に関係しているかを突き止めた。

ユニットの機能をオン・オフ

更に、特定したユニットの機能をオン・オフさせ、その効果を検証した。特定のユニットの機能を停止させることで、オブジェクトを取り去ることができることを示した。反対に、そのユニットの機能を強化することで、オブジェクトを追加できることも示した。(下の写真がその事例、左端がオリジナルのイメージで、木に関連するユニットの機能をオフ・オンすることで、木を削除(中央)したり、追加(右端)できる。)

出典: MIT-IBM Watson AI Lab

アルゴリズムは常識を学ぶ

特定されたユニットはオブジェクトを生成するだけでなく、オブジェクトに関する常識も学んでいる。例えば、ドアを追加する際には、建物のスタイルにマッチしたドアを生成する。更に、ドアを建物以外のオブジェクト(例えば空)に追加しようとしても、アルゴリズムはこれを拒否する(下の写真)。アルゴリズムは教育の過程で人間のように常識を得ることが示された。

出典: MIT-IBM Watson AI Lab  

応用事例

この技法を使うとイメージを容易に変更することができる。ユニットと家具や人物の関係を把握することで、イメージの品質を向上することができる。例えば、GANが生成した寝室(下の写真、左側上段)から家具や小物を削除することで綺麗なイメージ(下の写真、左側下段)が出来上がる。また、GANが生成した会議室(下の写真、右側上段)から人物や窓を取り除き新しいイメージの会議室(下の写真、右側下段)を生成できる。これらはピクセルを変換するのではなく、ニューラルネットワークの特定ユニットを操作することでイメージを変換する。

出典: David Bau et al

Explainable AIの研究が進展

このようにニューラルネットワークのユニットを操作することで、アルゴリズムがイメージを生成する仕組みの解明につながる。ニューラルネットワークは学習を積むことで、特定のオブジェクトを描くユニットを構成することが分かった。ドアを描くニューロンのグループを形成し、このユニットはドアの意味も理解し、背景にマッチしたドアを描く。高値で売れるAIアートを生成するアリゴリズムの開発に結び付くのか、ブラックボックスに光があたり、Explainable AIの研究が進み始めた。