Googleが発表した量子コンピュータ「Sycamore」(下の写真)は「Quantum Supremacy(スパコン越え)」に到達したのか判断が分かれているが、プロセッサは論理設計通りに稼働し、多数のゲート演算を実行し、大きなマイルストーンとなった。Sycamoreはエラーを補正する機構は搭載しておらず、大規模な演算を実行することは難しい。この種類の量子コンピュータは「Noisy Intermediate-Scale Quantum (NISQ)」と呼ばれ、ノイズが高く(エラー率が高く)、中規模構成(50から100Qubit構成)のシステムとなる。これからNISQで量子アルゴリズム開発が始まる。 果たしてNISQという不安定な量子コンピュータでキラーアプリを開発することができるのか、世界が注目している。

出典: Google |
量子コンピュータの構想
量子コンピュータの基礎概念は1981年にRichard Feynmanが提唱した。当時、Feynmanはカリフォルニア工科大学の教授で、講座「Potentialities and Limitations of Computing Machines (コンピュータの可能性と限界)」の中で量子コンピュータの概念を講義した。「自然界は量子力学に従って動いているので、それをシミュレーションするには量子コンピュータしかない」と説明し、量子コンピュータという構想を示した。
量子技術を実現する
量子コンピュータの基礎研究が進む中、最初に量子コンピュータの演算単位「Qubit」を生成することに成功したのはDavid Wineland(当時アメリカ国立標準技術研究所の研究者、下の写真)のグループである。この研究が認められ、量子システムを計測・制御した功績で、2012年にノーベル物理学賞を受賞した。この研究ではTrapped Ion(電荷を帯びた原子(イオン)を容器に閉じ込めこれをレーザー光線で操作)という手法で2つのQubitからなる量子ゲートを生成した。量子コンピュータの演算基礎単位を実現できたのは2006年ごろでまだまだ新しい技術である。

出典: National Institute of Standards and Technology |
NISQという種類の量子コンピュータ
今では、GoogleがSycamoreを開発し、53のQubitで量子ゲートを構成し、まとまった計算ができるようになった(下の写真)。これに先立ち、IBMは量子コンピュータを「IBM Q System One」として販売している。これらは「Noisy Intermediate-Scale Quantum (NISQ)」に分類され、Qubitが正常に稼働できる時間(Coherence Time)が短く、エラー(Decoherence)が発生してもそれを補正する機構は無く、不安定なシステムとなる。このため、スパコンを超える性能は出せるが、大規模な構成は取れないという制約を持つ。因みに、NISQというコンセプトはカリフォルニア工科大学教授John Preskillにより提唱された。Preskillは米国で量子技術の基礎研究をリードしており、「Quantum Supremacy」というコンセプトも同氏が提唱した。

出典: Google |
量子機械学習アルゴリズム
NISQは量子ゲートのエラー率が高く大規模な演算はできないが、規模の小さい量子アルゴリズムの研究で使われている。実際に、化学、機械学習、物性、暗号化などのアルゴリズム開発が進んでいる。特に、量子機械学習(Quantum Machine Learning)に注目が集まっている。これはAIを量子コンピュータで実行する手法で、大規模なデータを量子状態で処理することで、アルゴリズム教育を高速で実行できると期待されている。具体的には、ニューラルネットワークで多次元のデータを処理するとき、そのデータマトリックスをQubitの量子状態にエンコードすることで学習プロセスが効率化される。一方、AIの実行では大量のデータを量子プロセッサに入力する必要があるが、このプロセスがネックとなる。量子コンピュータは演算速度はけた違いに速いが、データを読み込んだり、データを書き出す処理で時間がかかる。このデータ入出力プロセスを高速で実行することが重要な研究テーマとなっている。
ハイブリッド構成で稼働
NISQは現行コンピュータを置き換えるものではなく、両者が協調してタスクを実行する構成が取られる。これは「Hybrid Quantum-Classical Architectures」と呼ばれ、NISQが現行コンピュータのアクセラレータ(加速器)として機能する。現行コンピュータでアプリを実行する際にその一部をNISQにアウトソースする形を取る。パソコンでビデオゲームをする際に、アプリはCPUで稼働するが、画像処理の部分はGPUで実行される方式に似ている。
ハイブリッド構成で最適化問題を解く
ハイブリッド方式では「Variational Quantum Eigensolver (VQE)」という手法が注目されている。VQEはEigenvalue(固有値)を求める手法で現行コンピュータと量子コンピュータが連動して解を見つける。アルゴリズム全体は現行コンピュータで稼働し、数値演算の部分は量子コンピュータで実行される。具体的には、分子の基底状態(Ground State Energy、エネルギーが一番低い状態)を見つける計算や、ルート最適化(セールスマンが巡回するルートの最適化)などで使われる。
高信頼性量子コンピュータの開発
量子コンピュータ開発で、NISQは通り道で、最終ゴールは高信頼性量子コンピュータとなる。このために、ノイズに耐性のある量子ゲートの研究が続けられている。ノイズとは温度の揺らぎ、機械的な振動、電磁場の発生などがあげられる。これらがQubitの状態を変えエラーの原因となる。現行コンピュータでも記憶素子でエラーが発生するが、特別な機構を導入しエラー検知・修正をする。量子コンピュータでもエラーを補正する機構の研究が進んでいる。また、エラーに耐性の高いアーキテクチャの研究も進んでいる。その代表がMicrosoftの「Topological Qubit」で、Qubitの安定性が極めて高く、高信頼性の量子コンピュータができる。しかし、Topological Qubitはまだ基礎研究の段階で、物理的にQubitは生成できておらず、長期レンジの開発となる。(下のグラフ:Googleの量子コンピュータ開発ロードマップ、NISQではQubitの個数は1000が限界であるが、エラー補正機構を備えた高信頼性マシンではQubitの数は100万を超える。)

出典: Google |
生活に役立つ量子アプリケーション
高信頼性量子コンピュータが登場した時点で、大規模な量子アプリケーションを実行することができ、社会に役立つ結果を得ることになる。新薬の開発(分子のシミュレーション)、送電効率の向上(室温超電導物質の発見)、 化学肥料生成(窒素固定(Nitrogen Fixation)触媒の開発)、大気中の二酸化炭素吸収(炭素固定(Carbon Fixation)触媒の開発)などが対象になる。高信頼性量子コンピュータがいつ登場するのか議論が分かれているが、アカデミアからは開発までには10年かかるという意見が聞かれる。一方、産業界からは、開発ペースが加速しており5年と予測する人も少なくない。
大きなブレークスルー
Googleの量子コンピュータ開発責任者John Martinis教授はSycamoreを世界初の人工衛星「Sputnik 1(スプートニク1号)」に例えている。スプートニクは歴史的な成果であるが、人工衛星は電波を発信する機能しかなく、社会生活に役立つものではなかった。しかし、スプートニクが宇宙開発の足掛かりとなり、その後、リモートセンシングやGPSや衛星通信など多彩なアプリケーションが生まれた。同じように、Sycamoreは限られた規模のゲート演算しかできないが、このプラットフォームで若い研究者が量子アルゴリズムを開発し、 大きなブレークスルーを起こすことが次の目標となる 。量子コンピュータ開発が大きな転機を迎えた。