社会にAIが幅広く浸透し日々の生活で利用されているが、消費者はAIの機能を理解しないまま使っている。AIは万全ではなく、顔認識で誤認したり、クレジットカード審査で女性が不利になることが報告されている。GoogleはAIの概要を明示する必要があるとして、アルゴリズムの中身を消費者に開示するシステムを開発した。

出典: Google |
AIの品質証明書
これは「Model Cards」と呼ばれ、ここにアルゴリズムの機能や性能や限界が記載される。Model CardsはAIの品質保証書とも解釈でき、ここにAIの成績と欠点が書かれ、これを利用者や開発者に公開する。消費者はこれを読み、アルゴリズムの機能と限界を知り、AIを安全に利用する。
犬の種別を見分ける
例えば、ある企業が犬の種別を見分けるAIを開発し、それを販売したとする。Model CardsにはAIに関する基本情報が記載される(上のグラフィックス、イメージ)。これがAIの使用説明書となり、AIの特性を理解し適切に利用する。犬のどんな写真を使うとAIが正しく判定できるのかが分かる。大写しの写真や小さな写真ではAIが正しく判定できないことも理解できる。
Model Card:機能概要の説明
Googleは実際に、顔認識(Face Detection) AIのModel Cardsを公開した(下の写真)。ここには基本機能(Model Description)として、AIの概要が記述される(左側)。AIは認識した顔を四角の枠で囲って示すとの説明がある。また、顔の中で最大34のポイント(Landmark)を認識できるとしている。更に、ニューラルネットワークは「MobileNet」という種類で、軽量のイメージ判定AIであることが分かる。

出典: Google |
Model Card:アルゴリズムの限界
Model CardsはAI機能の限界についても記載している。顔の向き(Facial Orientation)の限界を表示し、これを超えると検知できないとしている。また、顔の大きさ(Face Size)が小さすぎると検知できないとしている。具体的には、瞳孔間の距離(Pupillary distance)が10ピクセル以下だと検知できない。他に、暗い場所、顔が隠れている場合、顔が動いている場合は検知できないと注意を喚起している。
Model Card:精度の説明
Model CardsはAIの判定精度についても説明している。精度は「Precision-Recall Values」をプロットしたグラフで示される(上の写真右側)。また、グラフはベンチマークで使用したデータ種類ごとに示され、ここでは三種類のデータセットを使った結果が示されている。Precisionとは顔と認識したケースの精度で、Recallとは写真の顔をどれだけ漏れなく認識できたかを示す指標となる。つまり、Recallを見ると特定グループ(肌の色や性別の集団)の精度が分かり、これにより性別や人種によるバイアスがあるかどうかを検証できる。

出典: Margaret Mitchell et al. |
業界で規格化を目指す
医薬品を買うと薬の効能や副作用や注意点が記載された説明書が添付されている。消費者はこれを読んで薬を安全に服用する。同様に、AIを使うときも消費者は説明書(上の写真、笑顔を検知するAIの説明書の事例)を読んで安全に利用する必要がある。これはGoogleが開発したAIだけでなく、他社が開発したAIにも適用することが求められる。このため、GoogleはModel Cardsを第一歩として、業界や開発者団体と共同で、この方式を規格化し普及させることを計画している。アルゴリズムの説明責任が求められる中、この活動がどこに向かうのか注視していく必要がある。