月別アーカイブ: 2017年3月

IBMは汎用量子コンピュータ「Q」をクラウドで提供、「Quantum Experience」で量子の世界に触れる

IBMは2017年3月6日、汎用量子コンピュータ (Universal Quantum Computer) を世界に先駆けて商品化することを明らかにした。この量子コンピュータは「IBM Q」という製品名でビジネスや科学向け商用機として開発されている。この発表に先立ち、IBMは量子コンピュータをクラウドとして提供している。実際に使ってみると簡単にプログラミングをしてそれを実行でき、量子の世界に触れることができる。

出典: IBM  

量子コンピュータクラウド

量子コンピュータクラウドは「Quantum Experience」と呼ばれ、インターネット経由でIBM研究所に設置されている量子コンピュータを使うことができる。量子コンピュータアルゴリズムを開発し、それをIBM Q (上の写真) で実行することができる。既に4万人の利用者があり量子コンピュータの普及が始まっている。IBMは量子コンピュータを公開することで革新的なアプリが登場することを期待している。

実際に使ってみると

Quantum ExperienceはIBM Q向けのインターフェイス「Quantum Composer」を提供している。実際に使ってみると簡単にプログラミングをしてそれを実行できる (下の写真)。ここでは5 Qubit (量子ビット、後述) のプロセッサが使われ、ライブラリーやゲートを指定してアルゴリズムを作る。完成したプログラムをサブミットするとIBM研究所に設置されているQで実行される。

出典: VentureClef

五線譜にゲートを割り当てる

Quantum Composerは音楽の五線譜 (上の写真上段) のような構造となっている。ここに演算子 (Gateと呼ばれる、右上の分部) を選んで張り付けていく。五線譜の五本のバーはQubitに対応しており、処理は左から右に進む。一番最後のピンク色の演算子 (Operationsと呼ばれる) はQubitの状態を表示する。つまり、Operationsがプリンターのように計算結果を出力する。下段はQubitの物理的な状態を表示する。ここではプロセッサは0.019651 Kelvin (0 Kelvinは摂氏マイナス273.15度) と極めて低い温度で稼働していることが分かる。

Qubitとは

量子コンピュータの動作原理については直感的に理解できないところが多いがQuantum Experienceを使うと少しは理解が早まる。量子コンピュータは原子など物質の基本単位の動きで稼働するシステムで、これらの動作はQuantum Mechanics (量子力学) に従う。量子コンピュータの情報最小単位を「Qubit」と呼ぶ。これが従来型コンピュータのBitに対応する。Bitは0と1で表されるが、Qubitは|0〉と|1〉と表記する。| 〉はKetと呼ばれ、数字ではなくベクトルであることを示す。|0〉はground stateとも呼ばれエネルギー量が最小であることを示す (下の写真、Z軸の方向)。この球体はBloch Sphereと呼ばれQubitの状態 (オレンジ色のライン) を示す。

出典: IBM  

Qubitの|0〉の状態とは

実際にQuantum Composerを使って|0〉の状態を見る。Quantum Composerで|0〉の状態を生成するが、全てのQubitは|0〉に初期化されており操作は不要で、Operations演算子でQubitを出力する (下の写真)。ここでは5つのQubitのうち最初のQubitの状態を出力する。

出典: VentureClef

その結果は棒グラフで示される (下の写真)。横軸はQubitの状態を示し、縦軸はその状態の存在率を示す。ここでは “00000”の値が0.937と示された。これはQubitが93.7%の割合で|0〉となっていることを表す。(本来は1.000となるべきだが誤差でこの値となっている)。同様に|1〉の状態を出力すると“00001”の値が1.000となる。

出典: VentureClef

Superpositionとは

Qubitは|0〉または|1〉の状態を取るだけでなく、両者の状態を同時に取ることができ、これを「Superposition」と呼ぶ。現行コンピュータのBitは0又は1のどちらかを示すが、SuperpositionではQubitは0と1を同時に示す。

出典: VentureClef

QubitをSuperpositionの状態にする

同様にQuantum Composerを使ってSuperpositionを表現すると分かりやすい。ここでも5つのQubitのうち最初のQubitを使う。Qubitは|0〉に初期化されており、それを「H」ゲートを使ってSuperpositionに遷移する。その結果をOperationsで出力する。(Hゲートは「Hadamard Gate」と呼ばれQubit |0〉を90度水平方向に倒す演算子となる。前述Bloch SphereでZ軸方向のベクトルをX軸方向に倒す操作となる。この状態がSuperpositionで(|0〉+ |1〉) / √2と記述する。)

Superpositionの状態を出力

その結果を出力すると (下のグラフ) “00000”の値 (上向きのベクトルで|0〉を示す) が0.529で、“00001”の値 (下向きのベクトルで|1〉を示す) が0.472となる。つまり、Superpositionとは|0〉と|1〉の状態が五分五分の割合で存在することを意味する。(このケースでも誤差のため0.500とはなっていない。)

出典: VentureClef

Superpositionとマシン性能

量子コンピュータはSuperpositionという特性を持つため、Qubitは取りえる場合の数がBitに比べて飛躍的に増える。例えば、現行の5 Bitマシンはある時点で表現できる情報は1通り (例えば“10011”) であるが、5 Qubitマシンではこれが32 (2^5) 通り (“00000”から“11111”) と増大する。これが量子コンピュータの処理能力が飛躍的に大きくなる理由である。(500 Qubitマシンが登場すると2の500乗 (2^500) の情報を処理できる。これは宇宙全体の物質の数に相当し、大規模な処理ができることになる。)

Entanglementとは

量子コンピュータで一番理解しにくい概念がEntanglementである。これはQubit同士が連携した状態で極めて特異な動きをする性質を指す。これはSuperpositionの特性に帰属し、多くのSuperpositionの状態でEntanglementが発生する。Entanglementの状態で個々のQubitはランダムに動くが、全体を観察するとそこにはあるルールが存在する。例えば、二つのQubitがEntanglementの状態になると、個々のQubitはランダムに動くが、二つのQubit間には強い相関関係があることを否定できない。

Entanglementの状態を作り出す

実際にQuantum Composerを使ってEntanglementの状態を生成し (下の写真)、その特異な動きを見る。ここでは5つのQubitのうち1番目と2番目のQubitを使う。1番目のQubitを「H」ゲートでSuperpositionにする。次に1番目と2番目を「+」ゲートでつなぎEntanglementの状態を作り出す。(+ゲートは「Controlled-NOT Gate」と呼ばれControl Qubitの値が1であればTarget Qubitの値を反転する。ここでは1番目のQubitが|1〉であれば2番目のQubitの値を反転させる。) 最後にそれぞれのQubitの状態を出力する。

出典: VentureClef

Entanglementの状態を出力すると

この結果を出力すると (下のグラフ)、二つのQubitは”00” (どちらも上向き) と”11” (どちらも下向き) となる。(このケースでも誤差のため”01” (上向きと下向き) 及び”10” (下向きと上向き) の状態が発生している。) それぞれのQubitはランダムな動きをするが、二つのQubitは同時に上向きか下向きの状態しかとらない。つまり一方の動きを観察すれば他方の動きが分かることになる。

出典: VentureClef

Entanglementの奇妙な特性

EntanglementはIBM Qのように隣り合ったQubit同士で発生するだけでなく、距離に関係なく発生する。つまり、遠く離れたQubit間でもEntanglementが起こる。(仮に、上述のEntanglementの状態となったQubitの一方をSpaceXのFalcon 9で火星に送っても二つのQubitは上述の挙動を示す。地上のQubitが|0〉(上向き) であれば火星のQubitも同時に|0〉(上向き)となる。|1〉のケースでも同じ動きをする。このことは光の速度を超えて二つのQubitが同期していることを示し、物理現象の定理を根本から破ることになる。)

高速検索アルゴリズム:Grover’s Algorithm

未知な領域を含む量子コンピュータであるが、その膨大な計算能力を引き出すため早くからアルゴリズムの研究が進んでいる。その代表が「Grover’s Algorithm」で1996年にベル研究所のLov K. Groverにより発表された。これは非定形データの検索アルゴリズムで現行コンピュータより大幅に性能が向上することが示された。当時は量子コンピュータは存在せず論文発表に留まったが、今では量子コンピュータでこれを実証することができる。(先頭から二番目の写真はQuantum ExperienceでGrover’s Algorithmをコーディングしたもの。)

整数因数分解アルゴリズム:Shor’s Algorithm

ベル研究所のPeter Shorは1994年、量子コンピュータで整数因数分解 (integer factorization) の問題を解くアルゴリズムを開発した。これは「Shor’s Algorithm」と呼ばれ量子コンピュータを使うと高速で整数因数分解ができる。暗号化されたデータを復号化するときも整数因数分解が使われ、Shor’s Algorithmを使うと量子コンピュータで暗号データを解読できることになる。

量子コンピュータとセキュリティ

つまり、量子コンピュータが暗号文を解読しセキュリティが破られるという危機に直面している。

オンラインバンキングの通信プロトコールで「https」が使われるが、量子コンピュータが悪用されるとIDやパスワードを読み取ることができる。暗号化してもセキュリティは担保されないことになり対策が求められる。Shor’s Algorithmは暗号化技法の中心部である数学問題を解くことができるとして早くから課題が指摘されていた。量子コンピュータの登場が予想外に早くNSA (アメリカ国家安全保障局) はこの危険性に関する報告書を公開し対応を呼び掛けている。

量子コンピュータの登場が早まる

IBMは汎用量子コンピュータを世界に先駆けて商品化し数年以内に出荷することを明らかにした。Googleは研究所「Quantum AI Laboratory」で独自の量子コンピュータを開発しているが、五年以内に商用化することを公表した。両社とも製品内容についての情報は乏しいが商用量子コンピュータの道筋を示す形となった。量子コンピュータの登場は10年先と思われていたが、市場の予測を覆し製品出荷は大幅に早まった。(カナダのベンチャー企業D-Waveは既にQuantum Annealer型の量子コンピュータを出荷しているがその評価については意見が分かれている。)

IBMは世界初となる汎用量子コンピュータ「Q」を発表、AIスパコンWatsonの次の基軸技術と位置づける

汎用量子コンピュータ「Q」はIBMワトソン研究所で開発された。AIスパコン「Watson」もここで開発され、クイズ番組Jeopardyのチャンピオンを破り世界を驚かせた。IBMは汎用量子コンピュータをWatsonの次の基軸技術と位置づけ、数年後に製品を出荷する。量子コンピュータは研究素材ではなく一般企業で活用できるマシンとなる。コンピュータ技術が次の世代に移ろうとしている。

出典: IBM  

量子コンピュータ「IBM Q」

IBMは2017年3月6日、汎用量子コンピュータ (Universal Quantum Computer) を世界に先駆けて商品化することを明らかにした。この量子コンピュータは「Q」という製品名でビジネスや科学向け商用機として出荷される。(上の写真はIBM Qの外観、コンピュータは円筒形のケースに格納され冷却される。)

量子コンピュータクラウド

同時に、IBMは量子コンピュータクラウドと既存コンピュータを連携するAPI (アプリインターフェイス) を提供することも明らかにした。更に、IBMは量子コンピュータクラウド向けのSDK (開発環境) を提供する。これにより量子コンピュータ向けアプリケーション開発が容易になる。IBMは人工知能とブロックチェインに続き、量子コンピュータをクラウドで提供する。

量子コンピュータ開発ロードマップ

IBMはQのロードマップについて公開した。量子コンピュータの性能はQubit (量子ビット、コンピュータのビットに相当) の数で表される。IBMは数年後にQubitの数が50の汎用量子コンピュータを商用機として出荷する。ちなみ、現在最高速の量子コンピュータはQubitを20個搭載している。50 Qubitの量子コンピュータは既存アーキテクチャのコンピュータの性能を凌駕する次世代マシンとなる。更に、IBMの最終目標は数千Qubitを持つ汎用量子コンピュータを開発することいわれている。物理的には10万Qubitの量子コンピュータを開発することができるとされる。

IBMワトソン研究所

量子コンピュータはIBM Thomas J. Watson Research Center (IBMワトソン研究所) の量子コンピュータ研究部門「IBM Q Lab」で開発されている (下の写真)。この研究所はニューヨーク郊外のYorktownに位置し、ここで歴史に名を刻むスパコンが開発された。数値計算スパコン「Blue Gene」が開発され、標準ベンチマークで世界最高速をマークした。AIスパコン「Watson」もここで生まれ、クイズ番組Jeopardyで人間のチャンピオン二人を破った。

出典: IBM

天井から吊り下げられる構造

IBM Qは現行コンピュータとは形状が大きく異なり、天井から吊り下げられる構造となる (上の写真)。先頭の写真の通り、この部分がケースの中に格納され、ヘリウムを使ってAbsolute Zero (絶対零度、摂氏マイナス273.15度 = 0 Kelvin) 近くまで冷却され、温度を一定に保たれる。

プロセッサは絶対零度に冷やされる

構造体の先端部分は「Cryoperm Shield」と呼ばれ、ここにプロセッサ (Qubit Processor) が搭載される。構造体の温度は下に行くほど温度が下がり、プロセッサ部分は15 Millikelvinsに保たれる。(Millikelvinは絶対零度から0.001度の温度。宇宙で一番冷たいところは1 Kelvinといわれ、IBM Qより1000倍熱い。) 写真では分かりにくいが、円柱構造体の右上からシグナルが入り先端部のプロセッサを操作する。プロセッサからのシグナルは円柱構造体の左側を天井方向に進む。

プロセッサ冷却と制御

下の写真はCryoperm Shield (先端部分) より上の構造体を示す (上の写真を裏から見たところ)。左下段の円筒状の装置は「Mixing Chamber」と呼ばれ冷却装置 (Dilution Refrigerator) の最下部となり、プロセッサを冷却する。Mixing Chamberの上の部分は「Input Microwave Lines」と呼ばれ、プロセッサに制御シグナルと読み出しシグナルを送る。シグナルはQubitを保護するために格段で減衰される。

出典: IBM

プロセッサからのシグナル

プロセッサからのシグナルは「Quantum Amplifier」に入り増幅される。このシグナルは「Cryogenic Isolator」(上の写真、右側下段の箱状の装置) に入り、シグナルはパイプの中をノイズからシールドされて進む。更に、シグナルは超電導状態のケーブル (電気抵抗が無くシグナルは減衰しない) を進み、「Qubit Signal Amplifier」という装置で再度増幅される。Qubitのシグナルは極めて弱く、それをノイズから保護し各段で増幅する構造となっている。

Quantum Processor

プロセッサは5つのQubit (下の写真、中央部の正方形の分部) から構成される。Qubitはシリコン基板に超電導メタル (Superconducting Metal) を搭載した構造となっている。IBMはこのプロセッサを2016年5月に発表している。その当時、IBMは50から100 Qubit構成の量子コンピュータの完成には10年かかるとしていた。しかし、今回の発表では50 Qubit構成の量子コンピュータを数年後に出荷すると、予定を大幅に前倒しした。汎用量子コンピュータは近未来の技術と思われていたが、一挙に目の前の製品として姿を現した。

出典: IBM

IBM Qをどう活用するか

IBMは50 Qubitクラスの汎用量子コンピュータの活用方法についても明らかにした。IBM Qは現行コンピュータで処理できない複雑なモデルを実行する。その最重要アプリケーションが化学分野における分子のシミュレーションだ。分子をモデル化するがQuantum State (量子力学で表される状態) までを構築し、分子の特性を精密に理解する。これにより新薬の開発や新素材の開発が大きく進むと期待される。

化学分野やセキュリティ分野

既にIBM研究所で複数の分子モデルをIBM Qで生成することに成功し、実証試験が進んでいる。現行コンピュータではカフェインのような単純構造の分子でもQuantum Stateまでのシミュレーションはできない。これをIBM Qで実行することで新たな知見を得ることができる。この他に、サプライチェインの最適化、金融リスクファクターの解析、暗号化技術の開発などで利用が期待される。

量子コンピュータのアーキテクチャ

量子コンピュータといってもアーキテクチャは一つではなく異なるモデルが存在する。カナダのベンチャー企業D-Waveは「Quantum Annealer」という方式の量子コンピュータを開発し、既に製品を出荷している。この方式はエネルギーレベルを変え (Quantum Fluctuationと呼ばれる)、最小値 (Global Minimum) を見つける構造となる。このため利用できるアプリケーションが限られ、Optimization (配送ルート最適化など) 専用マシンとして位置づけられる。性能面では現行コンピュータを上回ることはない、というのが専門家の共通した見解となっている。

D-Waveは量子コンピュータ技術発展に大きく寄与

D-Waveは量子コンピュータの草分け的存在で、2011年に最初の商用機「D-Wave One」を発表し、Lockheed Martinなどで使われてきた。 後継機「D-Wave 2X」 はGoogleやNASAなどで使われ、最新モデル「D-Wave 2000Q」 (下の写真) は両者が運営するQuantum Artificial Intelligence Labに設置される。D-Waveの機能には制約があるものの、量子コンピュータ技術の発展に大きく寄与し、その功績は高く評価されている。

出典: D-Wave

Universal Quantum Computerとは

IBMはQはUniversal Quantum Computerというタイプの量子コンピュータを開発している。Universal Quantum Computerとは量子コンピュータの本命で、汎用的で超高速なコンピュータを指す。適用できるアプリケーションの幅が広く、物理的には10万Qubitまで搭載でき、桁違いに高速なシステムになる可能性を持っている。但し、開発は極めて難しくコンピュータのグランドチャレンジともいわれる。最初のマシンは数年後に登場し量子コンピュータ時代が始まる。

Google自動運転技術が格段に進化、高機能Lidarを開発し自動車部品メーカーを脅かす

Alphabetの自動運転車開発会社Waymoは独自でLidar (レーザーセンサー) 技術の開発を進め、機能が大幅に向上したと発表した。また、WaymoはUberの子会社OttoがLidar技術を盗用したとして提訴した。自動運転車開発競争の中心はLidarで、Waymoの特許を参考に最新技術をレビューする。

出典: Waymo  

Automobili-Dカンファレンス

Waymo最高経営責任者John Krafcikは2017年1月、デトロイトで開催されたNAIAS Automobili-D カンファレンスで最新の自動運転技術を発表した。この模様はビデオで公開された。WaymoはChrysler Pacifica Hybridベースの自動運転車 (上の写真) を開発しているが、KrafcikはLidarなどのセンサーを中心に最新技術を説明した。

クライスラーと共同開発

WaymoとFiat Chrysler Automobilesは2016年5月、自動運転車を共同開発することで合意し、100台の自動運転ミニバン「Waymo Self-Driving Pacifica」を製造している。ミニバンはWaymoが開発したハードウェア (Hardware Suit) を搭載し、最高レベルの自動運転車として位置づけられる。

Lidarを自社開発する

初期のGoogle自動運転車は他社製センサーやプロセッサを利用していた。LidarはVelodyne社製のハイエンドモデル「HDL-64E」を採用した (下の写真、屋根の上の円筒状装置)。しかし、この製品は機能的な制約があり、価格は75,000ドルと高価で車両価格を上回った。このため、WaymoはLidarを含むセンサー群を自社で開発することとした。

GoogleのAIとWaymoのセンサーを統合

センサーは自動運転車の頭脳であるAIと密接に統合された。センサーを構成する各コンポーネントがAIにより制御され、単一のモジュールのように機能する。Googleがスマートフォン「Pixel」でAndroid OSだけでなくデバイスも自社開発しているように、Waymoもソフトウェアだけでなくハードウェアも開発する方針とした。Googleが得意とするAIとWaymoの高精度センサーが結びつき自動運転技術が一気に進化した。

出典: VentureClef

センサーの種類と搭載位置

WaymoのセンサーはLidar、Vision System、Radarから構成される (下の写真)。ミニバンの屋根には小型ドームが搭載され、ここにLidar、Vision System、Radarが格納される。クルマの四隅にはRadarが設置される。別のタイプのLidarは前後と前方左右四か所に搭載される。

出典: Waymo  

Lidarがクルマの眼となる

センサー群の中で中心となるのがLidarだ。Lidarはレーザースキャナーでクルマ周囲のオブジェクトを3Dで把握する。つまり、Lidarは歩行者と人の写真を区別できる。更に、Lidarは静止しているオブジェクトを把握し、距離を精密に測定する。クルマは複雑な市街地を走行し、様々なオブジェクトを検知する必要がある。WaymoのLidarはブラインドスポットが無く、クルマ周囲の歩行者全員を検知できる。また、解像度が高く、歩行者がどちらを向いているかも判定できる。これにより歩行者の行動予測精度が大幅に向上した。

出典: Waymo  

Short Range Lidar

Waymoは三種類のLidarを搭載している。一つは「Short Range Lidar」でクルマの前後左右四か所に設置され、周囲のオブジェクトを認識する (上の写真、後部バンパーと右側前方の円筒状の装置)。クルマのすぐ近くにいる小さな子供などを把握する。解像度は高く、自転車に乗っている人のハンドシグナルを読み取ることができる。

Long Range Lidar

もう一つは「Long Range Lidar」 (上の写真、屋根の上のドームの内部に搭載) で遠方にあるオブジェクトにズームインすることができる。フットボール二面先のヘルメットを識別できる精度となる。これ以上の説明はないがWaymoが申請した特許 (下の写真、資料の一部) を読むとLong Range Lidarはユニークな構造となっている。

特許資料によるLong Range Lidarの構造

Long Range Lidarは通常のLidarと可変式のLidarの二つのモジュールから構成される。通常のLidarは固定式で設定された範囲をスキャンする。可変式のLidarはFOV (視野、レーザービームがスキャンする角度) を変えることができる。ズームレンズで特定部分をクローズアップするように、可変式Lidarは発光するレーザービームを狭い範囲に絞り込み、遠方の小さなオブジェクトも判定できるようにする。ただ、この特許が実際の製品にどのように実装されているかは、Waymoの説明を待つ必要がある。

出典: Waymo  

Vision Systemはカメラの集合体

Waymoは独自のVision Systemを開発した (一つ前の写真、屋根の上のドームに搭載される)。Vision Systemとはダイナミックレンジの広いカメラの集合体で、8つのVision Moduleから構成され、クルマの周囲360度をカバーする。信号機や道路標識を読むために使われる。Vision Moduleは複数の高精度センサーから成り、ロードコーンのような小さなオブジェクトを遠方から検知できる。

暗いところから明るいところまで見える

Vision Systemはダイナミックレンジが広く、暗いところから明るいところまでイメージを認識できる。暗がりの駐車場から直射日光を受けるまぶしい場面まで幅広く使える。通常のカメラは人間と同じように光の状態により見えにくい状態が発生する。Vision Systemはこの問題を解決するために開発され、太陽光が直接カメラに入る状態でもオブジェクトを把握できる。

Radarを大幅に改良

Waymoは20年にわたり技術進化がないRadarを大幅に改良した。通常のRadarは前方の狭い範囲をカバーするが、WaymoのRadarはクルマの周囲360度を連続してカバーする (一つ前の写真、前方側面と屋根後部のウイング状のデバイス)。雨や霧や雪の時に、Radarは他のセンサーを補完する。また、通常のRadarは車両の動きを把握するために使われるが、WaymoのRadarは車両以外に歩行者や自転車も検知する。移動速度が遅いオブジェクトについても高精度で検知できる。

走行距離とVirtual Miles

Waymoの自動運転車は累積で250万マイル走行した。市街地を中心に走行試験を重ねており、今年5月には300万マイルに達する。路上試験に加えWaymoはシミュレータで走行試験を重ね、2016年だけで10億マイルを走行した。シミュレータでは様々な走行状態を再現できる。ここでクルマにとって難しい状態や稀にしか発生しない事態をシミュレータで生成する。シミュレータでの走行がソフトウェアの改良に寄与している。

安全性が格段に向上

自動運転車の性能はどれだけの距離をドライバーの関与なしに自動走行できたかで決まる。試験走行中にドライバーが自動モードを解除することをDisengageと呼ぶ。Disengageの回数が少ないほど安全性が高いという関係になり、1000マイル走行して何回Disengageが発生したかという指標で評価される。2015年は0.80回で2016年は0.20回と大幅に改善しており、安全性が順調に改善されているのが分かる。ただ、2016年の数字は5000マイルごとに問題が発生しているとも解釈でき、製品として出荷するには更なる改良が求められる。

Lidarの価格が劇的に下がる

WaymoはLidarのコストを大幅に下げることに成功したと発表した。前述Velodyne社製のLidarより90%安い価格で提供する。Velodyne製Lidarの価格が75,000ドルであるが、Waymo製Lidarの価格は7,500ドルと大幅に安くなる。これにより自動運転車開発でセンサーの選択肢が大きく変わる。Lidar価格が高いためカメラを代用している企業も少なくない。Lidarの価格破壊で自動運転技術方式が大きく変わる可能性もある。

WaymoがUberを提訴

Waymoは2017年2月、Ottoとその親会社であるUberに対して訴訟を起こした。Waymoは同社が開発したLidar技術をOttoが不正に入手したとしている。Uberは昨年、誕生して間もないOttoを6億8千万ドルで買収し、創設者であるAnthony Levandowskiを自動運転開発部門責任者に任命した。UberがOttoを買収した理由はLidar技術にあるといわれていた。LevandowskiはGoogle自動運転車開発のコアメンバーであった。Uberはこれに対しWaymoの訴訟は開発を遅らせるための手段であると述べ、全面的に対決する姿勢を見せている。自動運転車でカギを握る技術はLidarであり、訴訟の進展が市場形勢に大きな影響を及ぼす。

自律走行型オフィス警備ロボットが登場、人間社会と共存できる優しいデザインが特徴

シリコンバレーでオフィス警備ロボットが登場した。ロボットは多種類のセンサーとAIを搭載し自動走行する。施設内で異常を検知するとオペレータに通知する。不審者を見つけると身分証明書の提示を求める。警備を担うロボットであるが威圧感は無く、形状は流線型で親しみやすいデザインとなっている。自動運転車で培った技術がロボットに生かされている。

出典: Cobalt Robotics  

屋内警備を担うセキュリティロボット

このロボットはシリコンバレーに拠点を置くCobalt Roboticsにより開発された。ロボットは「Cobalt」という名前で、屋内警備を担うセキュリティロボットとして登場した (上の写真)。ロボットは多種類のセンサーを搭載し自律的に移動する。ここにはComputer VisionやAIなど先進技術が使われている。プロモーションビデオをみるとCobaltはロボットというより家電に近いイメージだ。

施設を自動走行し異常を検知

ロボットは事前に設定されたルートを巡回して警備する。また、ロボットがランダムに施設内を移動することもできる。ロボットは経路上で人物や物を認識し、問題と思われるイベントを検知しこれを管理室に通報する。例えば、ドアがロックされないで開けられた状態であれば、これを異常事態と認識しオペレータ(Human Pilotと呼ばれる)に対処を促す。

環境をモニタリング

ロボットはオフィス環境をモニタリングし、水漏れなどの異常を検知することもできる。また、オフィスに不審物が置かれていれば管理室にアラートを上げる。備品管理機能があり、倉庫での棚卸や資材管理にも利用できる。更に、オフィス内のWiFiシグナル強度をモニターする機能があり、不正アクセスポイントを検知できる。

社員とのインターフェイス

ロボットは人間を認識でき、オフィス環境で共存できることを設計思想とする。ロボットは正面にディスプレイを搭載しており、社員が直接オペレータとビデオを介して話すことができる。また、非常時にはオペレータがロボットを遠隔で制御し社員を安全な場所に誘導する。更に、ロボットは定時以降オフィスに残っている人に対しては身分証明書の提示を求める。社員は身分証明書をロボットのリーダーにかざし滞在許可を受ける (下の写真)。

出典: Cobalt Robotics  

多種類のセンサーを搭載

ロボットは多種類のセンサーを搭載している。光学カメラは360度をカバーし全方向を見ることができる。暗闇での警備のために赤外線カメラを搭載している。Point Cloud Cameraで周囲のオブジェクトを3Dで把握する。Lidarと呼ばれるレーザースキャナーで周囲のオブジェクトを3Dで把握する。遠距離まで届くRFIDリーダーでオフィス備品などに張り付けられているタグを読み取り資材を管理する。

自動運転車で培われたAI技法を採用

ロボットはAIやMachine Learningの手法でセンサーが読み込んだデータを解析する。周囲のオブジェクトを判別し、安全に走行できる経路を計算し、ロボットが自律的に走行する。また、Computer Visionで水漏れなどの異常を検知する。更に、ロボットはマッピング技術を実装しており、走行時にLidarで周囲のオブジェクトをスキャンし高精度3Dマップを生成する。生成された3Dマップを頼りにロボットは自動走行する。多くの技術は自動運転車で開発され、Cobalt Roboticsはこの成果をロボットに応用している。

家電に近いロボット

Cobaltは警備ロボットであるが外観は人間に親しまれる形状となっている (下の写真)。これは著名デザイナーYves Béharによりデザインされ、表面は金属ではなく柔らかい素材が使われている。また、Cobaltはヒューマノイドではなく、下に広がる円筒形のデザインとなっている。ロボットというと鉄腕アトムのようなヒューマノイドを思い浮かべるが、Cobaltは家電とか家具に近いイメージだ。自動走行する家電と表現するほうが実態に合っている。

出典: Cobalt Robotics  

若い世代が考えるロボット

Cobalt RoboticsはErik SchluntzとTravis Deyleにより創設された。Schluntzはハーバード大学在学中にインターンとしてSpaceXとGoogle Xで製品開発に従事した。Deyleはジョージア工科大学でロボット研究を専攻し、Google XでSmart Contact Lensの開発に携わった。二人とも大学を卒業して間もなくCobalt Roboticsを創設した。若い世代がロボットを開発するとCobaltのように優しいイメージになる。

警備ロボットは既に社会で活躍

実は警備ロボットは既にアメリカ社会で活躍している。シリコンバレーに拠点を置くベンチャー企業Knightscopeはセキュリティロボットを開発している。このロボットは「K5」と呼ばれ、多種類のセンサーを搭載し屋外の警備で使われている。Microsoftがキャンパス警備でK5を採用したことで話題を集めた。Knightscopeの敷地内をK5がデモを兼ねて警備にあたっている(下の写真)。

出典: VentureClef  

屋内向け警備ロボットを投入

Knightscopeは小型ロボット「K3」を投入した。K3は建物内部を警備するためのロボットで、K5に比べて一回り小さな形状となっている。サンフランシスコで開催されたセキュリティカンファレンス「RSA Conference」でK3が紹介された (下の写真)。人間に代わりオフィスを警備するロボットで、高度なセンサーとAIを搭載し自律的に移動する。K3は形状が小型化しただけでなく、対人関係を考慮したキュートなデザインとなっている。

出典: VentureClef  

ロボットは商用施設に向かう

いまロボットは、オフィス、銀行、病院、高齢者介護施設、ホテル、小売店舗など商用施設で受け入れられている。警備機能だけでなく、ここでは既に多種類のロボットが稼働し企業の効率化を支えている。これら企業環境はロボットにとって自動走行しやすい場所である。企業のオフィスを例にとると、レイアウトが固定で通路が明確で、そこで働く社員は社会的な行動を取る。ここがロボット適用のスイートスポットで事業が急速に拡大している。

最後のフロンティアに向かっての準備

反対にロボット最後の市場は家庭環境といわれている。家庭のフロアには玩具や衣類が散在し、子供やペットが走り回る。WiFi通信は不安定で通信は頻繁に途切れる。AI家電のAmazon EchoやGoogle Homeは対話するロボットして位置づけられるが、移動する機能はない。一般家庭が最後のフロンティアで、商業施設向けロボットはその準備段階として重要な意味を持つ。

脳科学でサイバーセキュリティを強化、Googleは研究成果をChromeに応用

企業や政府機関はサイバー攻撃に対し多大なコストと時間をかけてセキュリティシステムを構築するが、社員や職員は不審な添付ファイルを開きマルウェアが侵入する。セキュリティ教育で怪しいリンクを不用意にクリックしないよう指導するがフィッシング被害は後を絶たない。なぜ人間は簡単なトリックに騙されるのか、ニューロサイエンスの観点から研究が始まった。

出典: WikiLeaks  

クリントン陣営へのサイバー攻撃

トランプ大統領が就任して以来、ロシア政府との関係が連日報道される。ロシア政府が大統領選挙を操作したとの疑惑で事実解明は進んでいない。一方、US Intelligence Community (米国諜報機関連合体) は大統領選挙でロシアがクリントン候補の活動を妨害したと結論付けている。米国諜報機関によるとクレムリンと関係のある人物がDNC (民主党全国委員会) のメールシステムに侵入し、それをWikiLeaksに提供したとしている (上の写真、窃取されたメールを閲覧できる)。

サイバー攻撃で大統領選が左右された

WikiLeaksに公表されたのはクリントン陣営会長John Podestaのメールで2万ページに及ぶ。この中にはクリントン候補がウォールストリートで講演した内容も含まれ、これらが公開されるとで選挙戦で大きなダメージを受けたとされる。クリントン候補の敗戦理由の一つがWikiLeaksで公開されたメールといわれている。

侵入の手口はシンプル

DNCのメールに侵入した方法はSpear Phishingといわれている。これはPhishingの常套手段で、信頼できる発信人を装い受信者の機密情報を盗む手法である。このケースではPodestaのGmailが攻撃された。Bitlyで短縮されたURLをクリックすると、Gmailログインページが表示され、IDとパスワードの入力を求められた。Podestaは怪しいと感じIT部門に確認したが、結局、このトリックに騙された。この事件は人間の脳の構造が関与しているといわれる。

脳科学とセキュリティに関する論文

脳科学を活用したセキュリティ技術研究が進んでいる。Brigham Young UniversityのAnthony Vanceらは脳科学とセキュリティに関する論文「More Harm Than Good? How Messages That Interrupt Can Make Us Vulnerable」を発表した。この論文は人間の脳はセキュリティメッセージにどう反応するかをfMRI (下の写真) を使って解析した。

出典: Jenkins et al.

マルチタスクでの試験

この研究は人間がマルチタスクを実行 (これをDual-Task Interfaceと呼ぶ) するときに着目し、脳の機能をfMRIで観察した。マルチタスクとは二つの作業を同時にこなすことで、ここでは作業中にセキュリティメッセージを読むタスクが課された。具体的には、被験者に7ケタの数字を覚えることを求め、同時に、セキュリティメッセージに正しく対応できるかが試験された。

マルチタスクでは血流が悪くなる

この時、脳内の血流をfMRIで計測した。対象はMedial Temporal Lobe (MTL) といわれる部位で、ここは長期記憶を司る部分とされる。結果は、被験者がマルチタスクの状態でセキュリティメッセージを読むとMTLの血流が少なくなっているのが観察された。このことはマルチタスクがMTLの活動を低下させ、長期記憶にアクセスしてセキュリティメッセージに反応する機能が著しく制限を受けることを意味する。(下の写真は普通の状態でセキュリティメッセージを読んでいる状態。マルチタスクの時と比べ、オレンジ色の分部で血流が増えた。)

出典: Jenkins et al.

Neurosecurityという研究

これは「Neurosecurity」と呼ばれる研究で、脳科学をセキュリティに応用し製品のインターフェイスを改良することを目指す。論文はセキュリティメッセージを表示するインターフェイスを改良する必要があると提言している。具体的には、利用者が作業を終えたタイムングを見計らってセキュリティメッセージを表示べきだとしている。

研究成果をGoogle Chromeに適用

Brigham Young UniversityはGoogleと共同で、研究結果をブラウザー「Chrome」に応用する試みを進めている。Chromeは「Chrome Cleanup Tool」というセキュリティツールを提供している。これをブラウザーにインストールしておくと、ブラウザーが問題を検知するとメッセージを表示し (下の写真、右上の分部)、利用者にツールを起動するよう促す。このツールを起動することでブラウザーに侵入したマルウェアなどを除去できる。

利用者はメッセージを無視する

便利なツールであるが、メッセージを表示しても利用者がアクションを取らないという問題を抱えている。実際に856人の被験者 (Amazon Mechanical Turkを利用) を使って試験が行われた。この結果、利用者がビデオをみている時にこのメッセージを出すと (下の写真)、79%のケースで無視された。つまり、マルチタスクの状態では利用者はセキュリティメッセージに反応しないことが分かった。このため、セキュリティメッセージはビデオが終わった後に表示するようGoogle Chromeのインターフェイスが改良された。

出典: Jenkins et al.  

Chromeインターフェイス改善

この他にも、利用者がタイプしている時や、情報を送信している時など、マルチタスク実行時には80%のケースでメッセージが無視されることも分かった。一方、ビデオを見終わったタイミングでメッセージを表示すると無視されるケースが44%に下がる。更に、ウェブページがロードされるのを待っている間にメッセージを表示すると無視されるケースが22%と大幅に低下する。これらの研究結果がGoogle Chromeのインターフェイス改善に生かされている。

脳科学に沿ったセキュリティデザイン

企業や政府でPhishing被害が後を絶たないが、これは人間の脳が持っている基本的な属性が大きく関与している。本人の不注意という側面の他に、ブラウザーやアプリのインターフェイスが悪いことが重要な要因となる。忙しい時にメッセージが表示されると、注意が散漫になり、操作を誤ることは経験的に感じている。Brigham Young Universityはそれを定量的に証明し、Googleはこの成果を製品開発に活用している。脳科学に沿ったセキュリティデザインに注目が集まっている。