カテゴリー別アーカイブ: 合成生物学

糖質を発酵させ蜘蛛の糸を生成、遺伝子編集で究極の素材が生まれている

蜘蛛の糸は理想の素材でこれを人工的に生成する研究が続いてきた。世界に先駆けてシリコンバレーのベンチャー企業が合成生物学の手法で蜘蛛の糸の生成に成功した。これは「スパイダーシルク」と呼ばれネクタイに編んで販売されている。

出典: Bolt Threads  

スパイダーシルクの合成に成功

スパイダーシルクの生成に成功したのはEmeryville (カリフォルニア州) に拠点を置くBolt Threadsというベンチャー企業だ。蜘蛛の糸はスチールより強くゴムより柔軟性がありウールより柔らかい。理想の素材として世界の研究者がこれを追い求めてきた。Bolt Threadsはこの開発に成功しスパイダーシルクで縫製したネクタイ (上の写真) の販売を開始した。これは編み地を使ったニットタイで素材感がありカジュアルな仕上がりとなっている。50本の限定販売で価格は314ドルと高めの設定になっている。

サステイナブル・ファッション

スパイダーシルクの特徴は素材の機能だけでなく、石油由来の製品に比べ製造工程で環境に対する負荷が小さい点が評価されている。米国では「Sustainable Fashion」という考え方が広がっている。これは持続可能性をコンセプトとしたファッションデザインで、環境に優しいお洒落が消費者の心を掴んでいる。大手ファッションブランドH&Mは「Conscious」という製品ラインを投入しサステイナブル・スタイルを提供している。Bolt Threadsは環境問題に意識の高い層に訴求する製品を投入した (下の写真)。

出典: Bolt Threads  

合成繊維は特性が偏っている

蜘蛛の糸に近い素材はナイロンで生活の中に幅広く浸透している。しかし、ナイロンなど合成繊維は特定の機能が優れているが総合的なバランスはよくない。例えばKevlar (ケブラー) は鉄鋼の5倍の強度を持つ繊維で防弾チョッキなどに使われる。一方、伸縮性や柔軟性は無く衣料品への応用は難しい。これに対して、蜘蛛の糸は強いだけでなく伸縮性や肌触りなど複数の機能をバランスよく持っている。

糖質を発酵させスパイダーシルクを生成

Bolt ThreadsはSynthetic Biology (合成生物学) のアプローチでスパイダーシルクの生成に成功した。合成生物学とは酵母の遺伝子を編集し発酵を通してマテリアルを生成する手法を指す。Bolt Threadsの場合は遺伝子を編集した酵母で糖質を発酵させスパイダーシルクたんぱく質を生成する。糖質としてはDextroseが使われている。 Dextroseとはグルコースの一種で幅広く市販されている。糖分補給のために摂取したり健康飲料のサプリメントとして使われる。簡単に入手できるDextroseからスパイダーシルクが生成された。

糸を編んでネクタイを作る

次に、合成されたスパイダーシルク片から糸を生成するプロセスとなる。スパイダーシルク片をたんぱく質を溶かす溶液の中をくぐらせ、細い糸に引き延ばす。白色の微細な繊維状の糸をよって一本の糸とする (下の写真)。最後に、この糸を編んでネクタイとして商品化された。

出典: Bolt Threads  

ファッション以外にも応用

Bolt Threadsはスパイダーシルクの応用分野をネクタイから衣服などのファッションに広げる計画である。更に、スパーダーシルクを自動車のシートに応用すると耐久性が格段に向上する。医療分野ではスパイダーシルクを人工アキレス腱として使い、また、手術の縫合糸としても使うアイディアが出されている。ネクタイは最初のステップでこれから商品レンジが拡大する。

Biomanufacturingと中国産業

自然界の素材を生成する技術は「Biomanufacturing」と呼ばれている。Biomanufacturingは石油由来の素材を生成するプロセスと対比して語られる。Biomanufacturingは環境への負荷が小さく、将来は石油由来の製品を置き換えたり補完すると期待されている。特に、中国企業がこの手法に大きな関心を示し、米国企業から技術供与を受け導入を始めている。中国の繊維・アパレル産業はGDPの6.4%を占め、全労働人口の11.24%がこの産業に従事している。中国企業は環境に与える影響を最小限にすることが求められ、繊維産業は石油製品への依存を最小限とし、Biomanufacturingへの移行を加速している。

もう一段のブレークスルーが求められている

Biomanufacturingは大きな期待を背負った技術であるが解決すべき問題も少なくない。スパイダーシルクの場合ではネクタイの原価は300万ドルといわれている。大量生産に移ると原価が下がるが、プロセス改良によるコストダウンも必須となる。プロトタイプの生成には成功したが、これを事業化するためにはもう一段のブレークスルーが求められている。

MicrosoftはDNAで記憶素子を生成、遺伝子にデータを保存する仕組みとは

Microsoft Researchは記憶素子としてDNAを使う研究を進めている。DNAで記憶装置を作りここにデータベースやビデオ映像を記録する。DNAを記憶装置に利用する理由はデータを高密度に格納できるため。MicrosoftはDNA記憶装置をデータセンターに設置する計画も明らかにした。

出典: Microsoft  

DNA素子にデータを格納することに成功

Microsoft ResearchはDNAを単位とする記憶素子にデータを格納しそれを読みだすことに成功したと発表した。DNAにビデオ映像などを格納し、それをエラー無く読み出しビデオを再生することができた。データ容量は200MBでビデオ映像の他にデータベースなどが含まれている。この実験は昨年実施されたが、今年に入り研究詳細が論文「Scaling up DNA data storage and random access retrieval」として発表された。

DNAが注目される理由

記憶素子としてDNAが注目されているのはその記憶密度にある。DNAに高密度でデータを格納でき、インターネット上のすべての情報を広辞苑一冊程度の大きさに収納できるとされる。Microsoftは研究成果を元にDNA記憶装置を開発し、数年後にはデータセンターに設置して運用する計画だ。これはプロトタイプとして位置づけられ、Microsoftが自ら次世代ストレージ開発に乗り出すことになる。

現在の記憶媒体が物理限界に近づいている

記憶素子としてDNAが注目されるもう一つの理由は現在の記憶媒体が物理限界に近づいていることがある。長期保存の記憶媒体には光学ディスクやハードディスクなどが使われる。またフラッシュメモリ(SSD)なども使われる。しかし記憶密度は1平方ミリメートルあたり10GB (10^10 B) で物理的な限界に近付きつつある (ハードディスクの場合)。これに対しMicrosoftが開発したDNAは記憶密度が1平方ミリメートルあたり10の18乗バイト (10^18 B) で1億倍高い。記憶密度が格段に高くなり次世代の記憶素子として注目を集めている。

長期の保存が可能になる

また、DNAを記憶素子として使うことで長期の保存が可能になる。DNAはシリコンと異なり柔らかく崩れやすいイメージがあるが、DNAを低温・低湿度で保存すると経年劣化が極めて小さい。事実、マンモスの化石からDNAを取り出し遺伝子配列を読み出すことができるように、数十万年前の情報が正確に保持される。(下の写真、マンモスのDNAからマンモスを再生するプロジェクトが進んでいる。) また、フロッピーディスクやカセットテープは読み出し装置の製造が中止さると使えなくなる。しかし、DNAの読み出し装置 (DNA Sequencer) は人間が存在する限り必要で長期レンジで利用できる。

出典: Wikipedia / Royal BC Museum  

DNAメモリー素子の仕組み

DNAを記憶媒体にするロジックはシンプルである。しかし、それを実際に実行するには高度な技術を必要とする。DNAをメモリーとして使うには情報2ビットをDNAを構成する塩基 (A, G, T, C) にエンコードする:

          00 ➡ A

          01 ➡ G

          10 ➡ T

          11 ➡ C

つまりA (adenine) は00を意味し、G (guanine)は01を意味し、AGは0001となる。ビデオ映像などのデータは0と1で構成されるが、これをAとGとTとCの組み合わせに置き換える。現在の記憶装置は2ビットで稼働するがDNA素子は4ビットで構成されるメモリ素子となる。

ランダムアクセス・メモリ

DNA記憶素子は論理的にはランダムアクセス・メモリ (Random Access Memory) として機能する。パソコンで使われるSRAMやDRAMに相当する。記憶する情報の基本単位(レコード)を定義し、ここにIDやアドレスやペイロードを設定する。情報を書き込むときこの構成のDNAを生成する。このプロセスはDNA Synthesisと呼ばれ、DNAの塩基を特定の配列に組み上げる。今では多くのベンチャー企業が登場しDNA Synthesis技術が高度に進化している。

データ読み出し方法

生成されたDNAは容器 (DNA Pool、下の写真) に入れて保存される。DNAを読み出す際にはDNA読み出し装置 ( DNA Sequencer) を使う。遺伝子解析の時と同じ要領で、容器の中のDNA配列を読み出す。これはSRAMに記録されたデータを読み出す方式に似ており、データにランダムにアクセスし、IDやアドレスをキーに論理ファイルを組み上げていく。

出典: Lee Organick et al.  

DNA生成速度とコストが課題

遺伝子解析の進化でDNA読み出し技術は急成長し、Illumina社などから製品が提供されている。かつては人の全遺伝子解析ではコストが27億ドルとされたが、今ではこれが1000ドル程度でできる。一方、課題はDNA生成のプロセスで、如何に高速でDNAを生成できるかがカギになる。DNAという生物体を生成するため時間がかかりコストも大きい。現在、DNA生成速度は毎秒400 バイトで200MB生成するためには80万ドルかかると推定される。商用化にはDNA生成の速度を上げ価格を下げるためのブレークスルーが必要となる。

合成生物学の進化

DNAを編集して記憶素子を生成するだけでなく、編集したDNAを微生物に組み込んで新しいマテリアルを生成する技術が急速に進化している。これはSynthetic Biology (合成生物学) と呼ばれ、新薬の開発や新素材の合成に応用されている。従来のBiologyと最新のITが融合し新しい産業が生まれている。

植物でできたハンバーガー、牛肉の味と変わらない、BiologyとAIの進化で信じられない食品が生まれている

牛肉を使わずすべて植物からできたハンバーガーが登場した。食べると牛肉の味がして本物と見分けがつかない。シリコンバレーで先端技術を駆使した次世代食品が生まれている。Biology (生物学) とAIが結びつきSynthetic Biology (合成生物学) でイノベーションが起こっている。

出典: VentureClef  

次世代食品を開発

このハンバーガーはシリコンバレーに拠点を置くImpossible Foodsというベンチャー企業が開発した。スタンフォード大学教授が起業した会社で、合成生物学により植物から食肉を生成する研究をしている。次世代の食料を開発することがミッションで、GV (Google Ventures) やBill Gatesなどが出資している。

実際に食べてみた

このハンバーガーは「Impossible Burger」と命名されサンフランシスコ地区のレストランで提供され始めた。実際にこのハンバーガーを食べてみた。注文すると小ぶりのハンバーガーが二つプレートに乗って出てきた (上の写真)。見た目は普通のハンバーガーで、食べると牛肉の味がしてとても美味しかった。パテの中から赤い肉汁が出てきて、見た目だけでなく味も牛肉と見分けがつかない。若干味が薄いと感じたが、これが植物からつくられているとは信じられない。

本物をリバースエンジニアリング

Impossible Foodsは本物のハンバーガーの構成要素を解析し、リバースエンジニアリングしてこの製品を開発した。パテには小麦から抽出したたんぱく質が使われ、外観と食感が作られる。パテの表面はジャガイモのたんぱく質で覆われ、グリルで焼くと香ばしくなる。パテにはココナツオイルの粒が入っており、これが霜降りとなりグリルで焼くと油がぱちぱちと跳ねる。

ハンバーガーの味を決める「Heme」

ハンバーガーの味を決めるのがHemeという素材だ。Hemeとは血液中のヘモグロビンの色素を構成する物質で濃い赤色の液体である。これをパテに加えると牛肉の色になり、焼くと薄赤色の肉汁となる。Hemeは酸素と化合し肉独特の鉄分を含んだ香りや味となる。Hemeがハンバーガーの味を決める一番重要な材料となる。(下の写真はパテを作っているところで、赤身分部は小麦のたんぱく質にHemeを加えたもの。白い粒がココナツオイル片。)

出典: Impossible Foods  

生物学手法でHemeを生成

カギを握るHemeは合成生物学の手法で生成される。大豆のLeghemoglobin (Hemeに含まれるたんぱく質) の遺伝子を酵母分子に注入する。この酵母を発酵させるとLeghemoglobinが生成され、これをろ過してHemeを抽出する。マメ科植物の根粒にはLeghemoglobinが含まれており、酸素と化合しこれを運ぶ役目を担っている。食物からHemeを採取するのでは大量生産ができないし、蓄積された二酸化炭素が放出される。合成生物学の手法で生成しないと事業として成立しない。

人口が増えると食肉を供給できない

Impossible Foodsが植物ベースの食肉を生成するのは牛を飼育するには限界があるため。牛を飼育するには飼料として大量の干し草と水を必要とする。地球上で人口が増え続けると飼料の供給が限界となり、家畜から食肉を供給することができなくなる。このためImpossible Foodsは合成生物学の手法で食肉を生成する技術を開発している。牛肉だけでなく、豚肉、鶏肉、魚肉の開発を進めている。

消費者の反応

工場で人工的に製造された食肉は余りイメージが良くない。消費者はこれを食べることに抵抗感を持っていたが、ここ最近は受け止め方が変わってきた。調査会社のレポートによると、この傾向は若い世代で顕著で、ミレニアル層の2/3は工場で製造された肉を毎日食べると答えている。工場で製造された食肉は健康食品で、同時に、環境に優しい製品であることが評価されている。

合成生物学とは

上述の合成生物学とは生物で構成されるパーツやシステムを設計・製造する技術体系を指している。合成生物学はGenetic Engineering 2.0とも呼ばれ、遺伝子工学の最新技術を使っている。合成生物学はGenetic Code (特定のたんぱく質を生成するプログラム) を形成する塩基対 (A、T、C、G) を編集し、微生物 (Microbe) のDNAに組み込みたんぱく質を生成する。この技術を使って医療、農業、生活に役立つ物質を生成する。

出典: Apeel Sciences

合成生物学により誕生している製品

合成生物学により自然界には無い機能を持った製品が登場している。これらはImpossible Materialsと呼ばれ、信じられない機能を実現する。Impossible Burgerの他に植物から牛乳を生成する研究が進んでいる。腐らない果物が登場している (上の写真、特殊な素材でブルーベリーをコーティングすると日持ちが良くなる)。食物だけでなく生物 (クラゲやイカなど) が持っている発光のメカニズムを遺伝子操作で作り出し、これを建造物の照明に応用する。メタルより軽くて丈夫な”プラスチックエンジン”も研究されている。医療分野ではCRISPR/Cas9という高度な遺伝子編集技術を使いがん治療薬の開発が進んでいる。

AIやロボットがこれを支える

合成生物学をベースに物質を開発する手法はMicrobe Engineeringと呼ばれる。文字通り微生物を対象としたエンジニアリングで、DNA構造を設計し、これを試験で検証する作業の繰り返しとなる。合成生物学は未開の分野で試行錯誤で研究が進んでいる。DNA構造と分子反応のパターンの数は膨大でAIや機械学習の技術が無くては進まない。実際の検証はすべてのプロセスを自動化する必要がある。ロボットが実験を実行しその結果をAIが検証する。

21世紀最大のイノベーション

合成生物学はAIとRoboticsの進化で研究が大きく進んでいる。「21世紀最大のイノベーションはBiologyとTechnologyの交点で生まれる」という言葉がある。これは生物学者の発言ではなくSteve Jobsが亡くなる直前に述べた言葉である。この言葉の通り両者が結びつき信じられない機能を持った製品が登場している。