Google DeepMindが開発したAlphaGoは囲碁のチャンピオンを破り世界を驚かせたが、本当に賢いのか疑問の声が上がっている。AlphaGoはニューラルネットワークで構成され、この技法を究めれば人間のような知能を手にできるのかも問われている。

出典: DeepMind |
AIは知能を持つ
ニューラルネットワークは単に統計処理のアルゴリズムで、この道を進んでも知能を持つことはできない、との意見が少なくない。今の人工知能は人工無能と揶揄されるゆえんである。これに対し、DeepMindはAIのIQテストを実施し、ニューラルネットワークは一定の知能があることを突き止めた。ニューラルネットワークを改良すると、人間のように推論できる汎用的な知能を得ることができるとDeepMindは主張する。
ニューラルネットワークのIQテスト
DeepMindはニューラルネットワークのIQテストを実施した。この試験で、ニューラルネットワークは人間のように推論(Abstract Reasoning)できるかが試される。ニューラルネットワークで人間レベルの知能を目指すには、まず、今のAIの知能指数を把握する必要がある。(上の写真、IQテストのサンプルでAIが質問に答えていく。上段パネルの空白部分の答えをAからHの中から選ぶ。答えはA。円の数は左から右に向かい一つずつ増加。これはProgressionという概念を試験するもの。)
知能とは
知能(Intelligence)とは人間が持つ高度な能力で、論理的思考、自己認識、学習能力、推論能力、創造性など、幅広い要素から構成される。AIが知能を備えるためには、この中で推論機能が最初のステップとなり、ニューラルネットワークは推論機能を備えているかがカギとなる。知的なAIを開発するためには、いまのニューラルネットワークが抽象的概念をどの程度理解できるかを把握する必要がある。
IQテストの意味
DeepMindはこの目的で、ニューラルネットワークの知能指数を計測するIQテストを開発した。IQテストは経験から学習したことを図形などを使って視覚的に試験する。例えば、人はモノが進化する様子を経験的に学習する。庭で花が咲く様子を観察し、教室では数学の時間に数が増える概念を教わる。これらはProgressionという概念で、IQテストはこれをゲーム形式に展開し、被験者がこの概念をどれだけ応用できるかが試される。
IQテストの実例
実際の試験ではRaven-style Progressive Matricesという方式のIQテストが使われた(下の写真)。これは1960年代に開発されたもので、言葉ではなく図形を使い、生徒の知能(Fluid Intelligence)を試験する。これをニューラルネットワークに適用し、AIの知能を測定する。この試験ではProgressionの他に、XOR(排他的論理和)、OR、AND、Consistent Unionなど異なる概念が試験された。(下の写真左側:Progressionの試験。答えはA。星の数は上から下に向かい増える。下の写真右側:XORの試験。答えはA。左二つのパネルをXORで演算した結果を右端のパネルに表示。)

出典: David G.T. Barrett et al. |
試験方式
人間のIQテストは、我々が日々の生活で学習したことが試験される。しかし、AIは社会に接することはなく、人間のように学習する機会はない。このため、AIのIQテストでは、ニューラルネットワークをあるテストセットで教育し、別のテストセットで試験した。ニューラルネットワークが一つのテストセットで学習した知識を別のテストセットで生かすことができるかが試験された。
試験結果
試験では代表的なニューラルネットワーク(ResNetやLSTMなど)が使われ、それらの知能指数が計測された。更に、DeepMindはこの試験のために知的なニューラルネットワーク「Wild Relation Network (WReN)」を開発し、このモデルの知能指数を計測した。ニューラルネットワークは異なる条件で試験され、IQテストの正解率が示された。ニューラルネットワークの中でWReNが最もいい成績を収めた。WReNの正解率は76.9%で一定のインテリジェンスを持つことが示された(下のテーブル、最上段)。このケースでは教育と試験において同じテストセットが使われた。

出典: David G.T. Barrett et al. |
データセットが異なると
しかし、教育データと試験データが異なると、ニューラルネットワークの正解率は大幅に低下した。データが異なるとは、黒色のオブジェクトで教育し、白色のオブジェクトで試験する場合などを指す(先頭のIQテストにおいて、黒丸を白丸に変えて試験するケース)。この場合は正解率が13.0%と大きく下がり(上のテーブル、下から二段目)、ここがニューラルネットワークの弱点であることが分かった。人間だとオブジェクトの色や形状が変わっても数をカウントできるが、ニューラルネットワークは属性の変化で推論の過程が混乱する。
試験結果の解釈
DeepMindはこの研究を通して、ニューラルネットワークは抽象的な推論を学び、それを問題に適用する一定の機能があることを示した。ネットワークはピクセルから抽象的な概念が存在することを推論することができた。一方、ニューラルネットワークは実社会との接触はなく、限られたデータで教育されれるため、推論機能は限定的であることも分かった。つまり、知的なAIを開発するためには、人間社会との交わりが必須であることを示唆している。
次のステップ
DeepMindの目的は汎用的な知能を持つAIを開発することで、ニューラルネットワークが学んだことを幅広く適用することがゴールとなる。このために、WReNがIQテストで解を求める仕組みを解明することが次の研究ステップとなる。DeepMindは知能指数の高いAIを開発するコンテストを計画している。これは抽象類推コンテスト「Abstract Reasoning Challenge」と呼ばれ、高度な推論機能を持つAIをコミュニティと供に研究を進める。
二つの考え方
AI研究の次の目標は人間に匹敵する抽象推論(Abstract Reasoning)機能を持つマシンの開発にある。Facebook AI研究所所長のYann LeCunは、ニューラルネットワークを改良することで、推論や抽象事象を学習できるとの前提で研究を進めている。一方、New York UniversityのGary Marcus教授は、ニューラルネットワークを突き進めても壁に当たり、一般的な抽象推論機能を持つことはできないと主張する。DeepMindは前者の陣営に属し、ニューラルネットワークをベースとする知的なAIの開発を進めている。