Armは事業戦略を「フィジカルAI」に大転換、AIチップの「CPU」部分を担いロボットの頭脳を構成、ヒューマノイドとロボタクシーの製品開発が急進

Armはプロセッサ開発会社でRISCベースのアーキテクチャを開発している。Armは主要プロセッサで採用され世界の標準技術となっている。Armベースのプロセッサはクラウドで使われ計算機インフラを支えている。Armはプラットフォームをデジタルからフィジカルに大転換すると発表した。これは「フィジカルAI」に事業をシフトすることを意味し、Armが自動運転車やロボットの頭脳を構成する。今年はArmを搭載したヒューマノイドが製品化され、ロボティックスの進化を陰で支える。

出典: Arm

Armの会社概要と事業形態

Armはイギリス・ケンブリッジに拠点を置く企業でプロセッサと関連ソフトウェアを開発している。Armの名称はよく知られているが、その事業形態については理解が広がっていない。ArmはIntelなどとは異なり、プロセッサを製造販売するのではなく、プロセッサの知的財産 (Intellectual Property)をライセンスする形態を取る。知的財産とはプロセッサの設計図で、CPUコアの回路、プロセッサのアーキテクチャ(命令セット)、システム構成(チップに実装するときのインターフェイス)などで、企業はこれをベースに回路を最適化して独自の製品を開発する。AppleやQualcommやNvidiaなど主要企業がArmの知的財産をベースに独自プロセッサを開発しこれを販売している。

次世代GPUシステム

NvidiaはArmと提携し知的財産のライセンスを受け次世代GPUシステム「Vera Ruben」を開発した。このシステムは「Vera CPU」と「Ruben GPU」で構成されるスーパーチップとして製品化された(下の写真)。NvidiaはVera CPUの開発でArmから「Olympus」のライセンスを受け、これをベースに88コアの独自のCPUを開発した(下の写真、水色のチップ)。RubenがGPUとして数値演算を超高速で実行し(金色の二つのチップ)、VeraがCPUとしてシステムの制御などを実行する。Linuxなどの基本ソフトがVeraで稼働しシステム全体を制御する。

出典: Nvidia

エッジプロセッサ

またNvidiaは、ロボットや自動運転車向けのプロセッサ「Jetson Thor」を提供しているが(下の写真)、ここでもCPU部分はArmのアーキテクチャを採用している。Jetson Thorはシングルチップ「Silicon-on-Chip」構成で、一つのチップにGPU「Nvidia Blackwell」とCPU「Arm Neoverse-V3AE」を搭載する。CPUはArmの「Neoverse」ファミリーのハイエンドモデル「V-Series」でクラウドやAIプロセッサとして使われる。

出典: Nvidia

配送ロボット

自動運転技術を開発するNuroはNvidiaのエッジプロセッサを使ってロボ配送車両を開発した(下の写真)。ロボタクシーを小売店舗向けに適用し、走るスーパーマーケットとして展開している。クルマのブレインとして「NVIDIA DRIVE AGX Thor」を搭載している。ArmはこのプロセッサのCPUの部分を司り、システムの制御を実行する。

出典: Arm

ヒューマノイド・ロボット

Boston Dynamicsはヒューマノイド・ロボット「Atlas」を開発している(下の写真)。Atlasは関係会社であるHyundai Motor(現代自動車)の製造工場に導入され、人間の作業員に代わりパーツのハンドリングを実行する。また、Boston DynamicsはGoogle DeepMindと提携し、フロンティアモデル「Gemini Robotics AI」を採用することを発表した。これにより、ロボットのインテリジェンスが格段に向上し汎用的なタスクを実行できると期待されている。AtlasはJetson Thorを搭載し、Nvidiaのロボット開発環境「NVIDIA Isaac Lab」で開発された。

出典: Boston Dynamics

フィジカルAI市場が急成長

自動運転車やロボット向けのプロセッサではNvidiaが先行しており、これをQualcommが追う展開となっている。QualcommはフィジカルAIプロセッサとして「Dragonwing」(下の写真)を投入した。DragonwingはQualcommのCPU「Oryon」を搭載し、NPUと共にAI処理を高速で実行する。CPU「Oryon」はQualcommが設計したプロセッサであるが、ここにArmのアーキテクチャを採用している。具体的には、Armのインストラクション・セット(機械命令のセット)を実装し、ソフトウェアの互換性を担保する構成となる。Qualcomm Oryonは自動運転車やロボットで採用が始まり、フィジカルAI市場が急速に拡大している。

出典: Qualcomm 

AIブームを陰で支える

ロボタクシーやヒューマノイド・ロボットでNvidiaやQualcommのAIプロセッサが使われ、製品開発が進み多彩な製品がリリースされている。GPUやNPUがエッジプロセッサのエンジンとなり注目を集めるが、その背後でArmベースのCPUが重要な役割を担っている。GPUやNPUはAIシステムの中の数値計算エンジンとして位置付けられ、CPUは基本ソフトを稼働させシステム全体を制御し効率的な演算を司る。多くのエッジプロセッサがArmアーキテクチャを採用しており、これによりソフトウェアの互換性が保証され、半導体を跨りシステムを稼働することができる。Armはクラウドなどデジタルな領域から、ロボティックスなどフィジカルな領域に事業を拡大し、AIブームを陰で支える。

Nvidiaはオープンソース自動運転技術「Alpamayo」を投入、AI推論機能を搭載しクルマの知能が劇的に向上、停滞しているロボタクシー開発が急進するか

NvidiaのCEOであるJensen HuangはCES 2026の基調講演でAI技術の最新情報を公開した(下の写真)。講演のハイライトはロボティックスで、Nvidiaはヒューマノイド・ロボットと自動運転車を開発するための最新のプラットフォームを投入した。ロボットと自動運転車は共通項が多く、AIフロンティアモデルの推論機能を搭載することでインテリジェンスが格段に向上した。Nvidiaは自動運転車開発フレームワーク「Alpamayo」を開発し、これをオープンソースとしてリリースした。メルセデス・ベンツなどの自動車メーカーはこれをベースに開発を開始し、今年は多彩な製品が登場することになる。

出典: Nvidia

自動運転技術「Alpamayo」

自動運転フレームワーク「Alpamayo」は画期的な技術で、ヒューマノイド・ロボットの技法をクルマに適用した構造となる。クルマはカメラが捉えた映像を入力とし、これを解析することでシーンの意味を理解し、次のトラジェクトリ(進路)を出力する(下の写真)。つまり、クルマはカメラの映像から、人間のように状況を把握し、これをステアリングやブレーキ操作などの機械命令に変換する。特に、Alpamayoは高額なレーザーセンサー(Lidar)を使うことなく、カメラだけで自動走行できることが最大の利点となる。

出典: Nvidia

VLAモデル

この手法は「VLA (Vision-Language-Action)」モデルと呼ばれ、ビジョン(カメラの映像)と言語(人間の命令)をAIモデルが考察し、アクション(デバイスを操作する機械命令)を生成する仕組みとなる。これはロボット開発のコア技術でVLAモデルがロボットのブレインを構築する(下のグラフィックス)。Nvidiaはこの手法をクルマに適用し、自動運転技術のインテリジェンスが高度に進化した。

出典: OpenVLA

AlpamayoのVLAモデル

AlpamayoのVLAモデルはカメラの映像や人間の指示を入力とし、ドライビングにおける判断を下す(Driving Decision)システムとなる(下の写真)。このモデルの特徴は、AIの推論機能により、判断した理由(Causal Reasoning、因果推論)を説明する機能が搭載されたことにある。従来の自動運転車のアルゴリズムはブラックボックスで、クルマの挙動を理解することができなかった。AlpamayoのVLAモデルはアルゴリズムが下した判断の根拠を出力し、クルマの挙動を理解できるようになった。

出典: Nvidia

因果推論(Causal Reasoning)とは

VLAモデルを実装したことでクルマはシーンを解析して因果推論(Causal Reasoning)を実行する。因果推論とは、原因とそれによって生じる事象を推定する機能で、クルマが特定の事象からそれに続く事象を推測することができる。例えば、走行中に歩道からボールが転がってきたら、AIモデルは「ボールを追って子供やペットが飛び出す可能性があり」と次の事象を推論する(下の写真)。更に、AIモデルは「速度を落とし停車できる準備をすること」と、次に取るべきアクションを出力する。

出典: Nvidia

システム構成

Alpamayoはオープンソースの自動運転車開発のプラットフォームで、メーカーはこのモデルを最適化することで独自の製品を開発する。AlpamayoはAIモデル、シミュレーション環境、データセットから構成され、インテリジェントな自動運転技術を開発するスタックとなる:

  • AIモデル「Alpamayo 1」:AIフロンティアモデル、100億のパラメータ、思考の連鎖など高度な推論機能
  • シミュレーション環境「AlpaSim」:クルマのシミュレーション環境、アルゴリズム教育などで利用、異なるシーンを生成し多彩な条件で試験を実行(下の写真)
  • データセット「Physical AI Open Datasets」:1,700時間に及ぶ路上走行試験のデータを格納、システムの教育に活用
出典: Nvidia

メルセデス・ベンツに搭載

Alpamayoはメルセデス・ベンツ「Mercedes-Benz CLA」に搭載され、「レベル2++」の自動運転技術を実現した(下の写真)。これは高度な運転支援システムで、市街地を自律的に走行する。実際にNvidiaはMercedes-Benz CLAがサンフランシスコ市街地をドライバーの介入無く走行するデモを示した。込み合った道路を長時間にわたりクルマが自動で走行し、その完成度の高さを示した。メルセデス・ベンツはAlpamayoをベースに完全自動運転車を開発する。また、Uber、Jaguar Land Rover、Lucid MotorsがAlpamayoをベースとする自動運転車を開発している。

出典: Nvidia

今年の主役はロボット

Nvidiaの基調講演はロボットが主役でヒューマノイド・ロボットからショベルカーまで多彩な形状のモデルが登場した(下の写真)。Nvidiaは自動運転車を含めロボットの開発環境をオープンソースとして公開しており、メーカーはこれを無償で利用し独自の製品を開発する。Nvidiaのビジネスモデルはプロセッサやサービスを有償で販売することで、エコシステムの拡大が重要な戦略となる。特にAlpamayoは高度に知的なモデルで、停滞している自動運転車の開発が一挙に進み、今年は多彩な製品が生まれると期待される。

出典: Nvidia

今年のキーワードは「AIサイエンティスト」、研究室に配属されエージェントとして医薬品を開発、トランプ政権のジェネシス・ミッションが大きな追い風

2026年はAIサイエンティストが研究所で人間に代わりバイオ医薬品などを開発する年となる。AIサイエンティストとは科学技術に特化したAIエージェントで、研究者に代わり新薬の開発などを実行する。AIサイエンティストは科学に関する膨大なデータを解析し、仮説を立案し、それを検証することで、地上に存在しない新たなたんぱく質や抗体などを生成する。トランプ政権はジェネシス・ミッションで、AIサイエンティストを戦略技術と位置付けており、連邦政府がこのプロジェクトを支援する。

出典: Generated with Google Nano Banana Pro

AIサイエンティストとチャットボット

AIサイエンティストは最重要研究テーマで議論が白熱しハイプの状態が続いてきた。今年はこれがいよいよ技術として実装される年となる。AIサイエンティストはチャットボットとは機能も構造も大きく異なる。チャットボットは科学者の質問に回答し、アシスタントとして研究を支援する。これに対しAIサイエンティストは、与えられた研究テーマを人間の介在無く自律的に実行する。医薬品の開発では特定の機能を持つたんぱく質を創成するなど、人間の研究者レベルのタスクを実行する。

AIサイエンティストの機能

このように、AIサイエンティストは研究者として位置付けられる。人間がハイレベルな研究テーマを指示し関連するデータセットを提示すると、AIサイエンティストは独自で研究プロセスを展開する。具体的には、公開されている論文を読み研究の最先端情報を理解する。次に、提示されたデータセットを解析し、これらを統合して仮説を構築する。更に、構築した仮説を証明するために試験を実行する。

出典: Generated with Google Nano Banana Pro

AIサイエンティストの性能

最先端のAIサイエンティストは人間の研究者が半年かかる作業を半日程度で実行する。研究を実行するためには膨大な数の論文を読む必要があるが、AIサイエンティストは1,000を超える論文を読みこれを理解し研究の最先端情報を把握する。これらをベースに仮説を立案し、これを検証するプロセスを実行する。実際には、仮説を検証するためのプログラムを生成し、これを実行することで推論が正しいことを裏付ける。AIサイエンティストは膨大な情報を解析するだけでなく、これを前提し新たな仮説を生み出し、これが正しいことを証明する機能を持つ。

AIサイエンティストの恩恵

AIサイエンティストは医療において大きな進化をもたらすと期待されている。ニューロサイエンスの分野では、脳の加齢のメカニズムを解明し、アルツハイマー型認知症の治療薬の開発で大きな成果が期待される。また、エネルギーの分野では、ペロブスカイト太陽電池(perovskite solar cells)を効率化する技法の開発で使われる。

フロンティアモデルとの関係

AI開発企業からOpenAI GPT-5.2やGoogle Gemini 3などフロンティアモデルがリリースされているが、これらが単体でAIサイエンティストを構築することはできない。AIサイエンティストの開発では「Structured World Model(構造的世界モデル)」というアーキテクチャがキーとなる。AIサイエンティストは複数のAIエージェントから構成され、Structured World Modelがこれらを管理運用するフレームワークとなる。このフレームワークの元で、論文を解析するAIエージェントや提示されたデータを解析するAIエージェントなどが稼働しており、エージェント間で情報を共有する制御や、長時間にわたりコヒーレントな処理を保証する仕組みなどが必須の機能となる。

AIサイエンティスト市場

ビッグテックやスタートアップがAIサイエンティストの開発を進めている。その代表がGoogleで、AIサイエンティスト「AI Co-scientist」を開発している。AI Co-scientistは、膨大な量のデータセットをベースに、物理学、バッテリー素材、核融合発電などの分野をターゲットに、自律的に研究を実行する。GoogleはAI Co-scientistを米国エネルギー省の国立研究所に納入し、科学技術研究に寄与することを計画している。トランプ政権のジェネシス・ミッションに沿って、国立研究所と共同でサイエンスの研究開発を加速する。

出典: Google

研究所の自動化技術

AIサイエンティストはロボティックスと融合し、研究所のオペレーションを自動化する。これは「Self-Driving Labs (SDLabs)」と呼ばれ、AIサイエンティストが構築した仮説を、研究所においてロボットが実験を司り、人間に代わりこれを証明する。AIサイエンティストが研究所のロボットに、薬剤の混合や試験結果の検証などを指示し、AIとロボットのループで研究が進む。ジェネシス・ミッションではこの技法を「Robotics Labs」と呼び、この開発を重要アクション項目と定めている。

出典: World Economic Forum

サイエンスのブレークスルー

AIモデルはブラックボックスでアルゴリズムの判定理由が不透明で、これがハルシネーションの原因となる。AIサイエンティストは研究成果の精度が厳しく問われ、生成した仮説を裏付けるデータが必須となる。AIサイエンティストは研究成果をRobotics Labsで検証し、根拠となる実験結果を示すことで、高精度な研究成果を生み出す。今年はAIサイエンティストで米国の科学技術研究が急進し、大きなブレークスルーが起こると期待される。

トランプ大統領は州政府がAIを規制することを禁止する大統領令に署名、賛成派と反対派で全米が二つに分断され議論が白熱

トランプ大統領は12月11日、「One Rulebook(ワン・ルールブック)」と言われる大統領令に署名した(下の写真)。ワン・ルールブックとはAIに関する連邦政府のルールで、これを全米で適用することを目的とする。現在は50の州政府が独自のAI規制法を制定し、開発企業はこれらの基準に準拠することが求められ、これがビジネスにおける大きな負担となっている。しかし、ワン・ルールブックの実態は、連邦政府のAI規制ではなく、州政府にAI規制の停止を求める条項が記載されている。トランプ政権は州レベルでも規制を緩和しAI開発を後押しするポジションを取る。これによりAI開発が急進すると期待される一方で、AI規制法が撤廃されることで、AIのリスクを管理することが不能となり、社会に重大な問題をもたらすと懸念される。

出典: The White House

ワン・ルールブックのビジョン

トランプ大統領は米国において単一のAI規制フレームワーク「National Policy Framework for AI」(下の写真)を導入する大統領令に署名した。このフレームワークは「ワン・ルールブック」とも呼ばれ、米国における統一したAI規制政策となる。50の州が個別に異なる法令を導入すると、開発企業は50の規制に準拠する必要があり、AI開発で大きな負担となる。このため、ワン・ルールブックを導入することで企業のAI開発を支援する。

出典: The White House

ワン・ルールブックの実態

しかし、大統領令を読むと連邦政府のルールブックはAIを安全に開発運用するためのガイドラインを定めているのではなく、州政府が独自のAI規制を施行することを禁じた内容となっている。カリフォルニア州は2025年9月、AI規制法「SB 53」を制定し、企業に対しAIモデルに関する情報の公開を求めている。トランプ政権のワン・ルールブックはこれら州政府のAI規制法を撤廃することを求めている。

司法省の役割

大統領令は連邦政府内の省庁を対象にしたもので、州政府など地方政府には権限が及ばない。このため、大統領令は既存の法令を根拠に州政府のAI規制法を制限する手段を取る。その代表が司法省による州政府の監視と訴訟である。大統領令は司法省に対し、州政府を訴訟するためのタスクフォース「AI Litigation Task Force」の制定を求めている。タスクフォースは州政府のAI規制法を審査し、連邦政府の指針に反する法令を特定し、州政府を訴訟する任務となる。この根拠として、州を跨る通商「Interstate Commerce」を妨げる州政府のAI規制法は憲法に違反する、とのポジションを取る。

商務省の役割

大統領令は商務省に対しては州政府への助成金をカットするアクションを求めている。連邦政府は地方のブロードバンドの整備のためのプログラム「BEAD (Broadband Equity Access and Deployment) Program」を運用している。商務省は州政府のAI規制法を精査し、この内容が連邦政府の指針に沿っていない場合は助成金の支給を停止するとしている。

例外事項

大統領令は州政府のAI規制法の中で次の項目については対象外としている。その代表が子供をAIの危険性から守る法令「child safety protections」で、州政府が制定している児童を対象としたディープフェイクの規制は例外事項となり、このまま運用することができる。また、データセンタ建設に関する認可や、州政府がAI調達に関する法令は継続して運用できる。

連邦議会のアクション

同時に、大統領令は将来プランとして連邦政府がAI規制法を制定するための準備を求めている。実際には、AIと暗号通貨の責任者(David Sacks)に対して、ワン・ルールブックを法令で制定するための準備作業を求めている。AI責任者がAI規制法のドラフトを製作し、これを議会に提出する内容となる。これが米国におけるAI規制法となり、全米で統一した法令が制定されることになる。ただし、その内容はAI規制を緩和し、州政府のAI規制を禁止する内容になるとみられている。

出典: Wikipedia

賛成派と反対派で議論白熱

米国は大統領令に賛成するグループと反対するグループに二分され議論が白熱している。OpenAI、Google、Meta、Nvidiaなどは公式のコメントを発表していないが、大統領令を強く支持していると報道されている。更に、これら企業はロビー活動により、この大統領令を実現したとも言われている。一方、州政府はこの大統領令に強硬に反対し、このワン・ルールブックは州の権利を規定している憲法に違反するとして訴訟する準備を開始した。連邦政府が主張する「州を跨る通商」と州政府が主張する「州の権利」が法廷で裁かれることになる。

Microsoftはデータセンタを連結し「AIスーパーファクトリ」を構築、このインフラでスーパーインテリジェンスを開発、OpenAIと提携関係を保ちながらAGI開発で競合する関係となる

Microsoftはジョージア州にギガワット・データセンタ(下の写真)を建設しておりその概要を明らかにした。この施設はウィスコンシン州のデータセンタと高速通信で連結され、巨大計算環境「AIスーパーファクトリ(AI Superfactory)」実現する。ここでAGIとフロンティアモデルを開発する。MicrosoftはOpenAIとの提携契約を更新し、これからはフリーハンドで先進モデルを開発する。Microsoftにとって大きな転機で、先端技術をOpenAIに依存することなく、自社で独自にスーパーインテリジェンスの開発を進める。

出典: Microsoft

AIスーパーファクトリとは

AIスーパーファクトリ(AI Superfactory)とは異なる州に建設されたデータセンタを高速ネットワークで連結し大規模計算環境を生み出す構想となる。Microsoftはジョージア州アトランタに最新のデータセンタを建設しており、これを高速ネットワーク「AI Wide Area Network (AI WAN)」でウィスコンシン州に建設しているデータセンタ(下の写真)と結合し、巨大データセンタを構築する。物理的に異なるデータセンタを統合し仮想の単一データセンタを生み出す。

出典: Microsoft

AIスーパーファクトリの目的

現行のデータセンタは膨大な数のアプリケーションを実行するために使われるが、AIスーパーファクトリは単一の巨大AIモデルを開発することをミッションとする。具体的には、AGIを含む次世代AIフロンティアモデルを開発するための計算機環境となる。現在は、AIフロンティアモデルの教育では開発期間が数か月に及ぶが、これを数週間に短縮する。現行のAIフロンティアモデルの規模は1T(パラメータの数が1兆)であるが、次世代モデルはこれが200Tから300Tに膨らみ、メガデータセンタが必要となる。このセンタはMicrosoftだけでなく、OpenAIが次世代モデルを開発するために提供される。

フェアウォータ・デザイン

Microsoftはジョージア州アトランタに建設しているデータセンタの概要を明らかにした。設計コンセプトは「フェアウォータ・デザイン(Fairwater Design)」と呼ばれ、Nvidiaの最新GPUサーバを高密度に配置することに加え、サーバのスペックの変更に対応できる柔軟な設計思想となっている。Microsoftはウィスコンシン州にデータセンタを建設しているが、これもフェアウォータ・デザインに準拠し、このコンセプトのセンタの数が増えつつある。

出典: Microsoft

データセンタの構造

フェアウォータ・デザインでは最新の高速チップやラックが使われる。アトランタ・フェアウォータは「NVIDIA GB200 NVL72」(上の写真)が採用され、数十万ユニットの「Blackwell GPUs」を連結する。また、データセンタは二階建ての構造で単位面積当たりの計算機密度を最大にする(下の写真)。更に、GPUサーバは液冷式で、データセンタの冷却設備で水を使う必要がなく、環境への負荷を最小にする設計となる。

出典: Microsoft

スーパーインテリジェンス部門設立

これに先立ち、Microsoftはスーパーインテリジェンスを開発するためのチーム「Microsoft AI Superintelligence Team(MAIST)」を設立した(下の写真)。このチームは「Humanist Superintelligence (HSI)」を開発することを目的とする。HISとは人間の知能を超えるスーパーインテリジェンスで、機能や性能に制限を設け、人間の価値に沿ったモデルを開発する。スーパーインテリジェンスを開発するためにAIスーパーファクトリが使われる。

出典: Microsoft

スーパーインテリジェンスの機能

Humanist Superintelligence (HSI)は人間の知能を上回るが、モデルを安全に制御するために、一定の枠組みの中で稼働させる。これによりHSIが独自に進化し暴走するのを抑止する。更に、HISは特定のタスクに特化したモデルで人間社会の問題を解決することを目的とする。その主要セグメントが「Medical Superintelligence」で、医療分野のスーパーインテリジェンスとして、高度な医療技術を実現する(下の写真)。また、「Energy Superintelligence」はエネルギー分野のスーパーインテリジェンスで、クリーンエネルギーの生成と貯蔵の研究を加速する。最終ゴールは核融合発電で、スーパーインテリジェンスがこの研究開発をサポートする。

出典: Microsoft

OpenAIとの契約

MicrosoftはOpenAIと提携しChatGPTなどフロンティアモデルを開発する環境を提供してきた。両社の契約によると、Microsoftは独自でAGIを開発することを制限され、OpenAIが主導的な地位を維持する構造となっていた。しかし、OpenAIの組織改編により新たな契約が締結されこの制約が解除された。Microsoftは独自にAGIやスーパーインテリジェンスを開発することができるようになった。このため、Microsoftは上述の「Microsoft AI Superintelligence Team」を立ち上げAGI・フロンティアモデルの開発に着手した。

協調と競合

両社の関係は新たな時代を迎え、Microsoftは継続してOpenAIに最新の計算機環境を提供しAGI開発をサポートする。また、MicrosoftはOpenAIのAIモデルをクラウド「Microsoft Azure」で独占的に提供する権利を維持する。一方、MicrosoftはAGI・フロンティアモデルを独自で開発するため、OpenAIと直接競合する関係となる。これからはMicrosoftとOpenAIは協調しながら競合するという複雑な関係となる。

出典: Microsoft