米国でAIを使った人事採用が規制される、企業はアルゴリズムの妥当性を監査することが求められる

米国企業は、人間に代わりAIが応募者を審査する、「AI人事」の導入を進めている。これに対し、ニューヨーク州は、AI人事を規制する法令を可決した。これはAIが偏った判定をすることを防ぐもので、企業はアルゴリズムの妥当性を証明することが求められる。企業はAIで採用プロセスを自動化しているが、これからはAI人事の運用には制限が課されることになる。

出典: Google

ニューヨーク市の法令

米国では、多くの企業が人事採用プロセスにAIを導入し、アルゴリズムが応募者を評価して、採用の可否を判定する。ニューヨーク市議会は、全米に先駆けて、AIを使った人事採用を規制する法令を可決した。これによると、AIを人事採用プロセスで使う場合は、企業はアルゴリズムが公平に判断を下すことを証明することが求められる。

第三者による監査

具体的には、第三者がアルゴリズムの公平性を監査することが義務付けられた。企業は、アルゴリズムが、性別や人種や出身地に関わらず、公平に評価できることを証明する必要がある。更に、人事面接でAIを使う場合は、その旨を応募者に明らかにすることも求めている。

アルゴリズムの監査

アルゴリズムを監査するというコンセプトは、企業の決算を監査する考え方に似ている。上場企業は、決算報告書を財務当局に提出するが、その際、第三者により決算書の内容が正しいことを証明する。アルゴリズムも同様に、人事採用のプロセスで、AIがバイアス無しに正しく判定を下すことを証明することが求められる。

AI人事のバイアス問題

ニューヨーク市がAI人事を規制する背景には、アルゴリズムが特定グループに有利に働き、判定結果がバイアスしているケースが発生しているため。大企業の多くは、履歴書のスクリーニングや面接でAIを使っている。AIが人間に代わり、履歴書を読み、面接の応対を解析し、採用の可否を判断する。企業としては、多数の応募者を効率的に判定できるため、AIが必須のツールとなっている。同時に、アルゴリズムの公正性について問題が指摘されていることも事実。

出典: Google  

AI人事の判定結果を検証

実際に、AI人事の判定結果を検証するプロジェクト「Objective or Biased」がその問題を明らかにした。AIは様々な手法で面接者を評価し、採用するかどうかを判定する。その一つが、「AI面接」で、アルゴリズムはビデオで撮影された応募者の表情を分析し、採否を判定する。アルゴリズムは、声や使う言葉や手ぶりや表情を分析し、応募者の個性や特性を掴み、募集しているポジションに適しているかどうかを判定する。

AI面接の手法

プロジェクトはAI面接システム「retorio」の判定精度を検証し、結果が公平かバイアスしているかを評価した。retorioはドイツ・ミュンヘンに拠点を置く企業で、ビデオ映像をAIで解析し、応募者の特性を5つの指標で評価する。これらは、「ビッグファイブ」 (Big Five Personality Traits)と呼ばれ、オープン性(Openness)、誠実性(Conscientiousness)、外向性(Extraversion)、合意性(Agreeableness)、神経症(Neuroticism)で構成される。

AI面接の信頼性に疑問アリ

AIがビデオ映像からこれらビッグファイブの特性を評価し、採用の可否を判定する。プロジェクトの検証によると、AIの判定精度は、人物以外のオブジェクトに依存し、必ずしも正しく判定できていないと指摘する。例えば、メガネをかけて面接すると、AIの評価が低下する。また、応募者の背景により評価が変わる(下の写真)。応募者の背後に本棚があると、AIの判定精度が大きく向上する(黄色のグラフ)。これらの事例から、AI面接でアルゴリズムは本人だけでなく、メガネや本棚など、それ以外のオブジェクトを評価しており、判定精度に疑問が残るとしている。

出典: Objective or Biased

アメリカ連邦議会

アメリカ連邦議会もAIによる自動化プロセスを規制する法案を審議している。これは「Algorithmic Accountability Act」と呼ばれ、AIが自動で意思決定をするシステムをハイリスクと認識し、企業にAIの安全性を担保することを求める。具体的には、アルゴリズムの判定精度が高く、バイアスしていないことを保証することが課せられる。この法案は審議中で、可決するかどうかは見通せないが、連邦政府もAIの規制に動き始めた。

AI面接システムの販売停止

AI面接については、その判定精度を疑問視する意見が多く、米国のAI企業HireVueは、AI面接のシステムの販売を停止した。HireVueはビデオ面接の映像をAIで解析し、採用の可否を判定するシステムであるが、AIが本当に人間のように公正に判定できるのか、議論が続いていた。ニューヨーク市を発端に、米国でAI人事への規制が広がる勢いとなってきた。

自動運転ロボット「Nuro」がシリコンバレーで営業運転を開始、実際に使ってみたが自動運転車が注文した商品を玄関先まで配送

自動運転ロボット「Nuro」がシリコンバレーで営業運転を開始した。Nuroはトヨタ・プリウスをベースとした自動運転車で、注文した商品を玄関先まで配送する。今はセーフティドライバーが搭乗しているが、将来は、無人車両が商品を配送する。コロナの感染拡大で、Eコマースによる宅配事業が急拡大しており、自動運転ロボットへの期待が高まっている。

出典: Nuro

セブンイレブンと提携

Nuroはコンビニ「セブンイレブン」と提携し、カリフォルニア州マウンテンビュー市で宅配サービスを開始した。オンラインで購入した商品を、トヨタ・プリウスをベースとした自動運転ロボットが、消費者宅まで配送する(上の写真)。Nuroはドライバーの介在なく自動で走行する。Nuroは、専用車両「R2」を開発しており(上の写真左端の車両)、次のステップは、ロボットが無人で商品を宅配する。

実際に使ってみると

早速、Nuroによる配送を試してみたが、全てのプロセスがスムーズに動いた。セブンイレブンで商品を購入するために、専用アプリ「7NOW」を使った(下の写真)。ショッピング画面(左側)で宅配を選択し、希望する商品を購入した(中央)。支払い処理が終わると、店舗側で商品をNuroに積み込む作業が始まる。その後、Nuroがセブンイレブンを出発し、目的地に向かった。Nuroの位置はマップに表示され、運行状態を確認できた(右側)。

出典: VentureClef

Nuroが無事に到着

Nuroは、自宅前に停止し(下の写真)、配送スタッフが購入した商品を玄関先まで届けてくれた。Nuroには、セーフティドライバーが搭乗しており、クルマを安全に運行する。スタッフに話を聞いてみると、Nuroは殆どの区間を自動で走行するが、時々、セーフティドライバーがステアリングを操作するとのこと。(実際、Nuroは玄関前を通り越し、隣の家で停車したため、セーフティドライバーがマニュアル操作で、Uターンして自宅前にクルマを移動した。)

出典: VentureClef

カリフォルニア州の認可

Nuroは、営業運転を開始するにあたり、カリフォルニア州の陸運局 (Department of Motor Vehicles)から、公道を無人走行するための認可を受けた。走行できる地域が指定されており、Nuroはサンタクララ群とサンマテオ群で営業運転を展開できる。また、走行できる道路も規定され、定められたルートを安全に走行する。事実、営業運転は、サンタクララ群のマウンテンビュー市で開始された。(下の写真、試験走行中のNuro)

出典: VentureClef

次のステップ

Nuroは自動運転ロボット「R2」を開発している(下の写真)。R2はレベル5の自動運転車で、ロボットが無人で、商品を消費者宅に配送する。消費者は、ウェブサイトで商品を購入すると、R2がこれを配送する。R2は玄関先に停車し、消費者は貨物ベイのハッチを開けて商品を取り出す仕組みとなる。現在は、食料品の配送が中心であるが、将来は、医薬品の配送も計画されている。

出典: Nuro

ロボット宅配需要が高騰

新型コロナの変異株「Omicron」の感染が広がり、パンデミックの終息が見通せなくなり、宅配サービスの需要が急騰している。レストランの出前サービスの他に、食料品の配送ビジネスが拡大している。小売店舗側はNuroと提携し、ロボットによる宅配サービスを進めている。セブンイレブンの他に、スーパーマーケット「Kroger」やドラッグストア「CVS」がNuroによる宅配サービスを展開している。これらの需要に応えるため、Nuroは技術開発を加速している。

Microsoftはメタバース市場に参入、仮想空間でのビデオ会議システムを発表、MR技術をコラボレーションに展開

Microsoftはメタバースの技術開発を進め、3D仮想空間におけるビデオ会議システム「Mesh for Teams」を発表した。このシステムはメタバースに構築されるコラボレーション基盤で、アバターを介してコミュニケーションする(下の写真)。Microsoftは「Mesh」という名称でメタバース技術を開発しており、これをビデオ会議「Teams」に適用した。

出典: Microsoft

Microsoftが考えるメタバース

Microsoftは2021年3月、メタバースを構成する技術として「Mesh」を発表した。Microsoftは、メタバースをインターネットの新しいモデルと捉えている。メタバースは仮想空間で、ここに人々が集い、交流する場となる。また、メタバースに、人や物のデジタルツインが生成され、これらを介して、現実空間と仮想空間が連結される。Microsoftは現実空間と仮想空間の融合をMR(Mixed Reality)と呼び、Meshがこの技術を支えている。更に、MicrosoftはMRヘッドセットとして「HoloLens」を開発し、企業向けに提供している。

Mesh for Teamsとは

メタバース上に展開するビデオ会議システムは「Mesh for Teams」と呼ばれ、コラボレーションツール「Teams」をMR空間「Mesh」で運用する構成となる。Teamsは在宅勤務におけるコラボレーションツールとして、幅広く利用されている。Mesh for Teamsは、その新機能で、自分のアバターを介してテレビ会議に参加する(下の写真、右側)。また、企業はMesh for Teamsを使って、会議室やロビーなど、仮想空間を生成することができる。ここに3D仮想オフィスが生成され、社員はアバターを介してここでデジタルに勤務する。

出典: Microsoft

Accentureの仮想オフィス

Accentureは既に、メタバース上にオフィス空間を生成し、社員のコラボレーションの場として活用している。仮想のキャンパスは「Accenture Nth Floor」と呼ばれ、ここに社員が集い、オフィス勤務をする(下の写真、イメージ)。社員は、オフィスでコーヒーを飲みながら会話を交わすこともできる。会議室ではプレゼンテーションを行い、また、パーティーを開催することもできる。仮想キャンパスは、テレビ会議とは異なり、社員同士が出会い交流する場となる。物理オフィスで雑談するなかで、アイディアが生まれるように、メタバースは社員が出合い言葉を交わす場となる。

出典: Microsoft

メタバース・アプリケーション

Microsoft はMeshとHoloLens を使ったメタバース・アプリケーションの開発を進めている。メタバース・アプリケーションは、場所を超えて共同作業をする空間を構築する。例えば、オフィス内に3D 仮想スペースを構築し、共同作業を進めることができる(下の写真)。複数の社員がHoloLens 2を着装し、会議室やオフィスに集合し、そこで実物を見ながら製品開発を進めることが可能となる。このアプリケーションはMeshで生成され、HoloLens 2からアクセスする。

出典: Microsoft

メタバースへのアクセス技術

Microsoft は、メタバースへのアクセス技術としてMR グラス「HoloLens」を開発した。現在は、第二世代の製品「HoloLens 2」を出荷しており、これを着装し、現実空間に構築された仮想オブジェクトを操作する(下の写真)。企業向けのデバイスで、メタバース・アプリケーションと組み合わせて利用する。Microsoft はVR(仮想現実) とAR(拡張現実) を統合した技術をMR(複合現実)と呼び、メタバースにアクセスする基礎技術と位置付けている。

出典: Microsoft

Mesh for Teamsを開発した理由

Microsoftは、ポストコロナのワークスタイルはハイブリッドとなり、遠隔勤務が重要な役割を担うと分析している。遠隔勤務では、管理職が考えるより、仕事を効率的に進めることができるとしている。一方、社員は、遠隔勤務では、会社の同僚と会えないことが最大の課題だと指摘する。オフィス勤務では、同僚と立ち話ができ、人間関係が深まる。また、会議では、同僚の素振りから、その場の空気を読むことができた。遠隔勤務では、これら人間関係のウェットな部分が欠落し、社員同士が疎遠になる。Mesh for Teamsはこれらの問題点を補完するために開発された。社員はデジタルツインであるアバターを生成し、これらを介して、表情や感情を表し、他の社員と交流する(下の写真)。

出典: Microsoft

メタバースのロードマップ

Meta(Facebook)はメタバースにソーシャルネットを構築する構想を描いているが、Microsoftはメタバースで企業向けのソリューションを提供する戦略を取る。その最初のステップがコラボレーションで、社員は3D仮想空間で共同作業を実行する。航空機のエンジンの設計を遠隔地と社員と共同で進めるソリューションを提供している(下の写真)。Microsoftの強みはAIやクラウドで、Mesh for Teamsでメタバース開発レースに参戦した。

出典: Microsoft

Nvidiaはメタバースで地球のデジタルツインを生成、スパコンとAIで気候モデルをシミュレーション、数十年先の豪雨や干ばつを予測

先週、Nvidiaは開発者会議「Nvidia GTC 2021」で、地球温暖化対策に寄与する新技術を発表した。これは、地球をメタバースで構築し、ここで気候モデルをシミュレーションし、温暖化対策に役立てるという構想である。気候モデルは巨大で、新たにスパコンを開発して、これを実行する。しかし、高精度なモデルを実行するにはスパコンでも性能が十分でなく、AIで物理法則を解く技法を導入した。スパコンとAIを組み合わせ、数十年先の地球の気候を正確に予想する。

出典: Nvidia

地球温暖化問題

イギリス・グラスゴーで開催されたCOP26は、世界の平均気温の上昇を、産業革命前に比べ、1.5度に抑える努力をすることを再確認した。同時に、世界の平均気温は1.1度上昇しており、その影響が各地で広がっていることに警鐘を鳴らした。今年は、記録的な熱波や豪雨など、気象災害が世界各地で発生している。カリフォルニア州は記録的な干ばつで、大規模な森林火災が続き、気候変動がこれらの災害を加速している(下の写真)。

出典: Nvidia    

メタバースでシミュレーション

GTC 2021で、CEOであるJensen Huangが、NvidiaのプロセッサとAIを気候モデルに適用し、地球温暖化対策に寄与する手法を発表した。これはOmniverseで地球のデジタルツインを生成し、このモデルで地球の気候変動を解析する手法となる。具体的には、地球の気候モデル(Climate Model)を生成し、これをスパコンとAIでシミュレーションするアプローチを取る(下の写真、イメージ)。Nvidiaはメタバースの開発環境をOmniverseとして提供している。

出典: Nvidia    

気候モデルを生成

地球規模の気候モデルを生成することで、世界各地の気候を数十年先のレンジで予測する。将来の気候を正確に予想することで、危険性を正確に可視化でき、温暖化対策やインフラ整備のための基礎データとなる。天気予報は短期間の大気の物理現象を予測するが、気候モデルは数十年単位の気候シミュレーションで、物理学、化学、生物学などが関与し、巨大なモデルとなる。

豪雨や干ばつを予測

気候モデルを高精度で解析するには、地球規模の水の循環をシミュレーションする必要がある。これは「Stratocumulus Resolving」と呼ばれ、海水や地表面の水が、大気や雲を通して移動するモデルとなる(下の写真)。この循環が変わると、豪雨や干ばつによる被害が甚大となり、社会生活に大きな影響を及ぼす。

出典: NASA Goddard Space Flight Center

専用スパコンと最新のAI技法

しかし、このモデルをシミュレーションするためには、地表面をメートル単位の精度で計算する必要がある。現行の気候モデルのメッシュはキロメートルで、これをメートルにすると、演算量は1000億倍となり、世界最速のスパコンを使っても処理できない。このため、Nvidiaは気候モデル専用のスパコン「Earth-2」を開発するとともに、物理モデルをAIで解く技術の研究を始めた。下の写真は気候モデルの計算量の増加を示している。水循環モデル(Stratocumulus Resolving)をスパコンだけで計算するには、2060年まで待つ必要がある。

出典: Nvidia  

物理法則をAIで解く

このため、AIで物理法則を解く技法の研究が進んでいる。気候モデルのシミュレーションとは、物理法則に沿った挙動を可視化することを意味する。自然界の動きは物理法則に従い、古典力学、流体力学、電磁気学、量子力学などがその代表となる。気候モデルでは流体力学が重要な役割を果たし、流体の動きはナビエ–ストークス方程式(Navier-Stokes Equations)などで記述される。ニューラルネットワークでこの方程式を解く技法の開発が進んでいる。(下の写真、AIでハリケーンなどの異常気象を予想したケース。)

出典: Nvidia  

物理法則をAIで解くフレームワーク

Nvidiaは物理法則をニューラルネットワークで解くためのフレームワーク「Modulus」を提供している(下の写真)。Modulusを気候モデルに適用することで、AIでナビエ–ストークス方程式の解法を求めることができる。従来方式に比べ処理時間が大幅に短縮され、AIの新しい技法として注目されている。このプロセスを専用のスパコン「Earth-2」で実行することで、高精度な気候モデルのシミュレーションが実現する。

出典: Nvidia

気候変動に備える

気候モデルのシミュレーションで、数十年先の気候を正確に予測する。世界の主要都市は、数十年先に起こる気候条件に応じて、インフラ整備を進める。また、温暖化防止対策を策定する際に、どの方式が一番有効であるかを検証できる。地球のデジタルツインは、計測されるデータでアップデートされ、異常気象を高精度で予測し、地球温暖化対策の重要なツールとなる。

Nvidiaは企業向けメタバースを開発、リアルなAIアバターが人間に代わり顧客に応対する

今週、Nvidiaは開発者会議「Nvidia GTC 2021」で、メタバースの最新技術を公表した。Nvidiaはメタバースの開発環境を「Omniverse」という名称で製品化しており、企業はこのプラットフォームで3D仮想空間を生成し、ソリューションを構築する。基調講演で、人間のデジタルツインであるアバターの新技術が公開された。高度な言語モデルを組み込んだAIアバターが人間と会話するデモが実演された。(下の写真、CEOであるJensen Huangのフィギュア「Toy Jensen」が身振りを交えて人間と対話する。)

出典: Nvidia

Omniverseとは

Nvidiaは、3D仮想空間を開発するプラットフォームを「Omniverse」として提供している。企業は、Omniverseで3D仮想空間を生成し、ここで様々なシミュレーションを実行し、製造プロセスを最適化する。Omniverseは、既に多くの企業で導入されている。自動車メーカーBMWは、Omniverseで製造工場のデジタルツインを生成し、生産工程を最適化している。(下の写真、BMWは製造施設の高精度なコピーを3D仮想空間に生成し、ここで生産工程をシミュレーションし、効率などを検証した。)

出典: BMW  

人間のデジタルツイン

開発者会議では、Omniverseで人間のデジタルツインを生成する技法と応用事例が紹介された。この技法は「Omniverse Avatar」と呼ばれ、高度なAIを統合したデジタルヒューマンとなる。AIアバターは視覚を備えており、相手を見ながら人間と会話する。また、相手の話し言葉を理解し、AIアシスタントとして人間に助言する。AIアバターは3Dフィギュアとして生成され、レイトレーシング(Ray Tracing)を使って作画され、本物の人形が動いているように見える。

顧客サービスアバター:Project Tokkio

AIアバターが人間に代わり顧客に応対する。このプロジェクトは「Project Tokkio」と呼ばれ、AIアバターは顧客をビジュアルに認識し、対話を通して顧客をサポートする。その一つが上述の「Toy Jensen」で、3Dフィギュア形状のAIアバターが、身振りや手ぶりを交えて、顧客と対話する。

また、AIアバターが、レストランのキオスクで店員に代わり、顧客の注文を取る。AIアバターが顧客と会話しながら、料理の内容を説明し、好みを聞き、最適なメニューを推奨する(下の写真)。AIアバターは高度な会話能力を備えているが、この背後では世界最大規模の言語モデル「Megatron 530B」が稼働している。

出典: Nvidia  

自動運転車のアシスタント:Drive Concierge

クルマが自動運転車となると、AIアバター「Drive Concierge」が運転のアシスタントとなる。AIアバターは、クルマのディスプレイに表示され、ドライバーとのインターフェイスとなる(下の写真)。AIアバターがドライバーとの対話を通して、目的地と到着時間を理解し、時間通りに到着するために、最適な運転モードを選択する。

出典: Nvidia

ビデオ会議のアシスタント:Project Maxine

Nvidiaは、コラボレーション空間を生成するための開発環境「Project Maxine」を提供している。企業はこのプラットフォームを使って、遠隔勤務のためのビデオ会議空間(仮想オフィスなど)を構築する。開発者会議では、これを拡張した機能が紹介された。AIアバターをビデオ会議に組み込むもので、発言者の言葉をリアルタイムに翻訳する。(下の写真、英語で発言した内容がフランス語に翻訳される。フランス語で発声するだけでなく、口の動きもフランス語となる。) また、発言内容はテキストに変換して表示される。

出典: Nvidia

AIアバターを支える技術

AIアバターであるOmniverse Avatarは、多種類のAI技法を組み合わせて生成される。主なAI技法は次の通り:

  • Riva:対話型の言語モデル。音声認識機能で発言者の言葉を理解する。また、テキストを音声に変換する機能で、自然なボイスを生成する。
  • Megatron 530B:大規模な自然言語モデル。人間のように、言葉を理解し、また、言葉を生成する機能を持つ。文章を完結する機能や、質問に答える機能がある。更に、文章を要約したり、他の言語に翻訳する機能がある。
  • Merlin:深層学習に基づく推奨エンジン。
  • Metropolis:コンピュータビジョンでビデオの解析など利用する。

メタバースの標準プラットフォーム

Nvidiaはメタバース開発のためのプラットフォーム「Omniverse」を提供しており、企業はこの環境で3D仮想空間を生成する。メタバース開発のために、多くのエンジニアやクリエーターが異なるツールを使ってアプリケーションを開発する。Omniverseは異なるツールを連携し、共同開発のプラットフォームとなる(下のグラフィックス)。いま、世界各国でメタバースの開発が進んでいるが、これらは独自手法で構築され、固有のメタバースが数多く生成されている。Nvidiaは、Omniverseをオープンなメタバース開発環境と位置付け、業界標準となるプラットフォームを目指している。

出典: Nvidia